Do you want to publish a course? Click here

2-dimensional Regge gravity in the conformal gauge

272   0   0.0 ( 0 )
 Added by Pier Paolo
 Publication date 1995
  fields Physics
and research's language is English




Ask ChatGPT about the research

By restricting the functional integration to the Regge geometries, we give the discretized version of the well known path integral formulation of 2--dimensional quantum gravity in the conformal gauge. We analyze the role played by diffeomorphisms in the Regge framework and we give an exact expression for the Faddeev--Popov determinant related to a Regge surface; such an expression in the smooth limit goes over to the correct continuum result.



rate research

Read More

84 - J. Ambjorn 1997
We study the fractal structure of space-time of two-dimensional quantum gravity coupled to c=-2 conformal matter by means of computer simulations. We find that the intrinsic Hausdorff dimension d_H = 3.58 +/- 0.04. This result supports the conjecture d_H = -2 alpha_1/alpha_{-1}, where alpha_n is the gravitational dressing exponent of a spinless primary field of conformal weight (n+1,n+1), and it disfavours the alternative prediction d_H = 2/|gamma|. On the other hand <l^n> ~ r^{2n} for n>1 with good accuracy, i.e. the boundary length l has an anomalous dimension relative to the area of the surface.
We adopt the standard definition of diffeomorphism for Regge gravity in D=2 and give an exact expression of the Liouville action in the discretized case. We also give the exact form of the integration measure for the conformal factor. In D>2 we extend the approach to any family of geometries described by a finite number of parameters. The ensuing measure is a geometric invariant and it is also invariant in form under an arbitrary change of parameters.
We consider the path-sum of Ponzano-Regge with additional boundary contributions in the context of the holographic principle of Quantum Gravity. We calculate an holographic projection in which the bulk partition function goes to a semi-classical limit while the boundary state functional remains quantum-mechanical. The properties of the resulting boundary theory are discussed.
We analyze conformal gravity in translationally invariant approximation, where the metric is taken to depend on time but not on spatial coordinates. We find that the field mode which in perturbation theory has a ghostlike kinetic term, turns into a tachyon when nonlinear interaction is accounted for. The kinetic term and potential for this mode have opposite signs. Solutions of nonlinear classical equations of motion develop a singularity in finite time determined by the initial conditions.
We investigate SU(3) gauge theories in four dimensions with Nf fundamental fermions, on a lattice using the Wilson fermion. Clarifying the vacuum structure in terms of Polyakov loops in spatial directions and properties of temporal propagators using a new method local analysis, we conjecture that the conformal region exists together with the confining region and the deconfining region in the phase structure parametrized by beta and K, both in the cases of the large Nf QCD within the conformal window (referred as Conformal QCD) with an IR cutoff and small Nf QCD at T/Tc>1 with Tc being the chiral transition temperature (referred as High Temperature QCD). Our numerical simulation on a lattice of the size 16^3 x 64 shows the following evidence of the conjecture. In the conformal region we find the vacuum is the nontrivial Z(3) twisted vacuum modified by non-perturbative effects and temporal propagators of meson behave at large t as a power-law corrected Yukawa-type decaying form. The transition from the conformal region to the deconfining region or the confining region is a sharp transition between different vacua and therefore it suggests a first order transition both in Conformal QCD and in High Temperature QCD. Within our fixed lattice simulation, we find that there is a precise correspondence between Conformal QCD and High Temperature QCD in the temporal propagators under the change of the parameters Nf and T/Tc respectively. In particular, we find the correspondence between Conformal QCD with Nf = 7 and High Temperature QCD with Nf=2 at T ~ 2 Tc being in close relation to a meson unparticle model. From this we estimate the anomalous mass dimension gamma* = 1.2 (1) for Nf=7. We also show that the asymptotic state in the limit T/Tc --> infty is a free quark state in the Z(3) twisted vacuum.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا