Do you want to publish a course? Click here

Highly Improved Staggered Quarks on the Lattice, with Applications to Charm Physics

80   0   0.0 ( 0 )
 Added by G. Peter Lepage
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

We use perturbative Symanzik improvement to create a new staggered-quark action (HISQ) that has greatly reduced one-loop taste-exchange errors, no tree-level order a^2 errors, and no tree-level order (am)^4 errors to leading order in the quarks velocity v/c. We demonstrate with simulations that the resulting action has taste-exchange interactions that are at least 3--4 times smaller than the widely used ASQTAD action. We show how to estimate errors due to taste exchange by comparing ASQTAD and HISQ simulations, and demonstrate with simulations that such errors are no more than 1% when HISQ is used for light quarks at lattice spacings of 1/10 fm or less. The suppression of (am)^4 errors also makes HISQ the most accurate discretization currently available for simulating c quarks. We demonstrate this in a new analysis of the psi-eta_c mass splitting using the HISQ action on lattices where a m_c=0.43 and 0.66, with full-QCD gluon configurations (from MILC). We obtain a result of~111(5) MeV which compares well with experiment. We discuss applications of this formalism to D physics and present our first high-precision results for D_s mesons.



rate research

Read More

We use a relativistic highly improved staggered quark action to discretize charm quarks on the lattice. We calculate the masses and the dispersion relation for heavy-heavy and heavy-light meson states, and show that for lattice spacings below .1 fm, the discretization errors are at the few percent level. We also discuss the prospects for accurate calculations at the few percent level of f_D_s, f_D, and the leptonic width of the psi and phi.
223 - K. Y. Wong , R. M. Woloshyn 2007
It is well established that lattice artifacts can be suppressed substantially by the use of SU(3)-projected smeared links in the fermion action. An example is the Highly Improved Staggered Quark action where the ASQ-like effective links are constructed from reunitarized Fat7 links. A general procedure is presented for computing the derivative of the fermion action with respect to the base links (fermion force) - a key component in dynamical simulations using molecular dynamics evolution. The method is iterative and can be applied to actions with arbitrary levels of smearing and reunitarization. The cost of calculating the fermion force is determined for the ASQ action and the HISQ action. Test results show that calculating the HISQ force is about two times more expensive than the ASQ force.
We present the first computation in a program of lattice-QCD baryon physics using staggered fermions for sea and valence quarks. For this initial study, we present a calculation of the nucleon mass, obtaining $964pm16$ MeV with all sources of statistical and systematic errors controlled and accounted for. This result is the most precise determination to date of the nucleon mass from first principles. We use the highly-improved staggered quark action, which is computationally efficient. Three gluon ensembles are employed, which have approximate lattice spacings $a=0.09$ fm, $0.12$ fm, and $0.15$ fm, each with equal-mass $u$/$d$, $s$, and $c$ quarks in the sea. Further, all ensembles have the light valence and sea $u$/$d$ quarks tuned to reproduce the physical pion mass, avoiding complications from chiral extrapolations or nonunitarity. Our work opens a new avenue for precise calculations of baryon properties, which are both feasible and relevant to experiments in particle and nuclear physics.
We present results from our simulations of quantum chromodynamics (QCD) with four flavors of quarks: u, d, s, and c. These simulations are performed with a one-loop Symanzik improved gauge action, and the highly improved staggered quark (HISQ) action. We are generating gauge configurations with four values of the lattice spacing ranging from 0.06 fm to 0.15 fm, and three values of the light quark mass, including the value for which the Goldstone pion mass is equal to the physical pion mass. We discuss simulation algorithms, scale setting, taste symmetry breaking, and the autocorrelations of various quantities. We also present results for the topological susceptibility which demonstrate the improvement of the HISQ configurations relative to those generated earlier with the asqtad improved staggered action.
This work continues our program of lattice-QCD baryon physics using staggered fermions for both the sea and valence quarks. We present a proof-of-concept study that demonstrates, for the first time, how to calculate baryon matrix elements using staggered quarks for the valence sector. We show how to relate the representations of the continuum staggered flavor-taste group $text{SU}(8)_{FT}$ to those of the discrete lattice symmetry group. The resulting calculations yield the normalization factors relating staggered baryon matrix elements to their physical counterparts. We verify this methodology by calculating the isovector vector and axial-vector charges $g_V$ and $g_A$. We use a single ensemble from the MILC Collaboration with 2+1+1 flavors of sea quark, lattice spacing $aapprox 0.12$ fm, and a pion mass $M_piapprox305$ MeV. On this ensemble, we find results consistent with expectations from current conservation and neutron beta decay. Thus, this work demonstrates how highly-improved staggered quarks can be used for precision calculations of baryon properties, and, in particular, the isovector nucleon charges.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا