Do you want to publish a course? Click here

First lattice study of low-energy charmonium-hadron interaction

49   0   0.0 ( 0 )
 Added by Shoichi Sasaki
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

We study the scattering lengths of charmonia (J/psi and eta_c) with light hadrons (pi, rho and N) by the quenched lattice QCD simulations on 24x24x24x48, 32x32x32x48 and 48x48x48x48 lattices with the lattice spacing a = 0.068 fm. The scattering length is extracted by using the Luschers phase-shift formula together with the measurement of the energy shift Delta E of two hadrons on the lattice. We find that there exist attractive interactions in all channels, J/psi(eta_c)-pi, J/psi(eta_c)-rho and J/psi(eta_c)-N: The s-wave J/psi-pi (eta_c-pi) scattering length is determined as 0.0119+-0.0039 fm (0.0113+-0.0035 fm) and the corresponding elastic cross section at the threshold becomes 0.018+0.013-0.010 mb (0.016+0.011-0.008 mb). Also, the J/psi-N (eta_c-N) spin-averaged scattering length is 0.71+-0.48 fm (0.70+-0.66 fm), which is at least an order of magnitude larger than the charmonium-pion scattering length. The volume dependence of the energy shifts is also investigated to check the expected 1/L^3 behavior of Delta E at a large spatial size L.



rate research

Read More

248 - Jeremy Green 2014
Recent progress in lattice QCD calculations of nucleon structure will be presented. Calculations of nucleon matrix elements and form factors have long been difficult to reconcile with experiment, but with advances in both methodology and computing resources, this situation is improving. Some calculations have produced agreement with experiment for key observables such as the axial charge and electromagnetic form factors, and the improved understanding of systematic errors will help to increase confidence in predictions of unmeasured quantities. The long-omitted disconnected contributions are now seeing considerable attention and some recent calculations of them will be discussed.
An analysis of the pion mass and pion decay constant is performed using mixed-action Lattice QCD calculations with domain-wall valence quarks on ensembles of rooted, staggered n_f = 2+1 MILC configurations. Calculations were performed at two lattice spacings of b~0.125 fm and b~0.09 fm, at two strange quark masses, multiple light quark masses, and a number of lattice volumes. The ratios of light quark to strange quark masses are in the range 0.1 <= m_l / m_s <= 0.6, while pion masses are in the range 235 < m_pi < 680 MeV. A two-flavor chiral perturbation theory analysis of the Lattice QCD calculations constrains the Gasser-Leutwyler coefficients bar{l}_3 and bar{l}_4 to be bar{l}_3 = 4.04(40)(+73-55) and bar{l}_4 = 4.30(51)(+84-60). All systematic effects in the calculations are explored, including those from the finite lattice space-time volume, the finite lattice spacing, and the finite fifth dimension in the domain-wall quark action. A consistency is demonstrated between a chiral perturbation theory analysis at fixed lattice spacing combined with a leading order continuum extrapolation, and the mixed-action chiral perturbation theory analysis which explicitly includes the leading order discretization effects. Chiral corrections to the pion decay constant are found to give f_pi / f = 1.062(26)(+42-40) where f is the decay constant in the chiral limit. The most recent scale setting by the MILC Collaboration yields a postdiction of f_pi = 128.2(3.6)(+4.4-6.0)(+1.2-3.3) MeV at the physical pion mass.
175 - Huey-Wen Lin 2012
Study of the hadronic matrix elements can provide not only tests of the QCD sector of the Standard Model (in comparing with existing experiments) but also reliable low-energy hadronic quantities applicable to a wide range of beyond-the-Standard Model scenarios where experiments or theoretical calculations are limited or difficult. On the QCD side, progress has been made in the notoriously difficult problem of addressing gluonic structure inside the nucleon, reaching higher-$Q^2$ region of the form factors, and providing a complete picture of the proton spin. However, even further study and improvement of systematic uncertainties are needed. There are also proposed calculations of higher-order operators in the neutron electric dipole moment Lagrangian, which would be useful when combined with effective theory to probe BSM. Lattice isovector tensor and scalar charges can be combined with upcoming neutron beta-decay measurements of the Fierz interference term and neutrino asymmetry parameter to probe new interactions in the effective theory, revealing the scale of potential new TeV particles. Finally, I revisit the systematic uncertainties in recent calculations of $g_A$ and review prospects for future calculations.
Systems with the quantum numbers of up to twelve charged and neutral pseudoscalar mesons, as well as one-, two-, and three-nucleon systems, are studied using dynamical lattice quantum chromodynamics and quantum electrodynamics (QCD+QED) calculations and effective field theory. QED effects on hadronic interactions are determined by comparing systems of charged and neutral hadrons after tuning the quark masses to remove strong isospin breaking effects. A non-relativistic effective field theory, which perturbatively includes finite-volume Coulomb effects, is analyzed for systems of multiple charged hadrons and found to accurately reproduce the lattice QCD+QED results. QED effects on charged multi-hadron systems beyond Coulomb photon exchange are determined by comparing the two- and three-body interaction parameters extracted from the lattice QCD+QED results for charged and neutral multi-hadron systems.
We evaluate by means of lattice QCD calculations the low-energy constant $ell_{7}$ which parametrizes strong isospin effects at NLO in $rm{SU}(2)$ chiral perturbation theory. Among all low-energy constants at NLO, $ell_{7}$ is the one known less precisely, and its uncertainty is currently larger than $50%$. Our strategy is based on the RM123 approach in which the lattice path-integral is expanded in powers of the isospin breaking parameter $Delta m= (m_{d}-m_{u})/2$. In order to evaluate the relevant lattice correlators we make use of the recently proposed rotated twisted-mass (RTM) scheme. Within the RM123 approach, it is possible to cleanly extract the value of $ell_{7}$ from either the pion mass splitting $M_{pi^{+}}-M_{pi^{0}}$ induced by strong isospin breaking at order $mathcal{O}left((Delta m)^{2}right)$ (mass method), or from the coupling of the neutral pion $pi^{0}$ to the isoscalar operator $left(bar{u}gamma_{5}u + bar{d}gamma_{5} dright)/sqrt{2}$ at order $mathcal{O}(Delta m)$ (matrix element method). In this pilot study we limit the analysis to a single ensemble generated by the Extended Twisted Mass Collaboration (ETMC) with $N_{f}=2+1+1$ dynamical quark flavours, which corresponds to a lattice spacing $asimeq 0.095~{rm fm}$ and to a pion mass $M_{pi}simeq 260~{rm MeV}$. We find that the matrix element method outperforms the mass method in terms of resulting statistical accuracy. Our determination, $ell_{7} = 2.5(1.4)times 10^{-3}$, is in agreement and improves previous calculations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا