No Arabic abstract
The 3-D Z(3) Potts model is a model for finite temperature QCD with heavy quarks. The chemical potential in QCD becomes an external magnetic field in the Potts model. Following Alford et al.cite{Alford_et_al}, we revisit this mapping, and determine the phase diagram for an arbitrary chemical potential, real or imaginary. Analytic continuation of the phase transition line between real and imaginary chemical potential can be tested with precision. Our results show that the chemical potential weakens the heavy-quark deconfinement transition in QCD.
We extend our previous study of the QCD phase structure in the heavy quark region to non-zero chemical potentials. To identify the critical point where the first order deconfining transition terminates, we study an effective potential defined by the probability distribution function of the plaquette and the Polyakov loop. The reweighting technique is shown to be powerful in evaluating the effective potential in a wide range of the plaquette and Polyakov loop expectation values. We adopt the cumulant expansion to overcome the sign problem in the calculation of complex phase of the quark determinant. We find that the method provides us with an intuitive and powerful way to study the phase structure. We estimate the location of the critical point at finite chemical potential in the heavy quark region.
We study the phase structure of lattice QCD with heavy quarks at finite temperature and density by a histogram method. We determine the location of the critical point at which the first-order deconfining transition in the heavy-quark limit turns into a crossover at intermediate quark masses through a change of the shape of the histogram under variation of coupling parameters. We estimate the effect of the complex phase factor which causes the sign problem at finite density, and show that, in heavy-quark QCD, the effect is small around the critical point. We determine the critical surface in 2+1 flavor QCD in the heavy-quark region at all values of the chemical potential mu including mu=infty.
We study the equation of state at finite temperature and density in two-flavor QCD with the RG-improved gluon action and the clover-improved Wilson quark action on a $ 16^3 times 4$ lattice. Along the lines of constant physics at $m_{rm PS}/m_{rm V} = 0.65$ and 0.80, we compute the second and forth derivatives of the grand canonical partition function with respect to the quark chemical potential $mu_q = (mu_u+mu_d)/2$ and the isospin chemical potential $mu_I = (mu_u-mu_d)/2$ at vanishing chemical potentials, and study the behaviors of thermodynamic quantities at finite $mu_q$ using these derivatives for the case $mu_I=0$. In particular, we study density fluctuations at none-zero temperature and density by calculating the quark number and isospin susceptibilities and their derivatives with respect to $mu_q$. To suppress statistical fluctuations, we also examine new techniques applicable at low densities. We find a large enhancement in the fluctuation of quark number when the density increased near the pseudo-critical temperature, suggesting a critical point at finite $mu_q$ terminating the first order transition line between hadronic and quark gluon plasma phases. This result agrees with the previous results using staggered-type quark actions qualitatively. Furthermore, we study heavy-quark free energies and Debye screening masses at finite density by measuring the first and second derivatives of these quantities for various color channels of heavy quark-quark and quark-anti-quark pairs. The results suggest that, to the leading order of $mu_q$, the interaction between two quarks becomes stronger at finite densities, while that between quark and anti-quark becomes weaker.
We investigate chemical-potential ($mu$) dependence of the static-quark free energies in both the real and imaginary $mu$ regions, using the clover-improved two-flavor Wilson fermion action and the renormalization-group improved Iwasaki gauge action. Static-quark potentials are evaluated from Polyakov-loop correlators in the deconfinement phase and the imaginary $mu=imu_{rm I}$ region and extrapolated to the real $mu$ region with analytic continuation. As the analytic continuation, the potential calculated at imaginary $mu=imu_{rm I}$ is expanded into a Taylor-expansion series of $imu_{rm I}/T$ up to 4th order and the pure imaginary variable $imu_{rm I}/T$ is replaced by the real one $mu_{rm R}/T$. At real $mu$, the 4th-order term weakens $mu$ dependence of the potential sizably. Also, the color-Debye screening mass is extracted from the color-singlet potential at imaginary $mu$, and the mass is extrapolated to real $mu$ by analytic continuation. The screening mass thus obtained has stronger $mu$ dependence than the prediction of the leading-order thermal perturbation theory at both real and imaginary $mu$.
We apply the Linear Logarithmic Relaxation (LLR) method, which generalizes the Wang-Landau algorithm to quantum systems with continuous degrees of freedom, to the fermionic Hubbard model with repulsive interactions on the honeycomb lattice. We compute the generalized density of states of the average Hubbard field and divise two reconstruction schemes to extract physical observables from this result. By computing the particle density as a function of chemical potential we assess the utility of LLR in dealing with the sign problem of this model, which arises away from half filling. We show that the relative advantage over brute-force reweighting grows as the interaction strength is increased and discuss possible future improvements.