Do you want to publish a course? Click here

Generalized Parton Distributions from Lattice QCD

80   0   0.0 ( 0 )
 Added by Dru Renner
 Publication date 2005
  fields
and research's language is English
 Authors D. B. Renner




Ask ChatGPT about the research

I review the LHPC Collaborations lattice QCD calculations of the generalized parton distributions of the nucleon and highlight those aspects of nucleon structure best illuminated by lattice QCD, the nucleons spin decomposition and transverse quark structure.



rate research

Read More

We present a comprehensive study of the lowest moments of nucleon generalized parton distributions in N_f=2+1 lattice QCD using domain wall valence quarks and improved staggered sea quarks. Our investigation includes helicity dependent and independent generalized parton distributions for pion masses as low as 350 MeV and volumes as large as (3.5 fm)^3, for a lattice spacing of 0.124 fm. We use perturbative renormalization at one-loop level with an improvement based on the non-perturbative renormalization factor for the axial vector current, and only connected diagrams are included in the isosinglet channel.
126 - M.Gockeler , Ph.Hagler , R.Horsley 2005
We present here the latest results from the QCDSF collaboration for moments of generalized parton distributions and transversity in two-flavour QCD, including a preliminary analysis of the pion mass dependence.
164 - C. Alexandrou 2019
We present results for the moments of nucleon isovector vector and axial generalised parton distribution functions computed within lattice QCD. Three ensembles of maximally twisted mass clover-improved fermions simulated with a physical value of the pion mass are analyzed. Two of these ensembles are generated using two degenerate light quarks. A third ensemble is used having, in addition to the light quarks, strange and charm quarks in the sea. A careful analysis of the convergence to the ground state is carried out that is shown to be essential for extracting the correct nucleon matrix elements. This allows a controlled determination of the unpolarised, helicity and tensor second Mellin moments. The vector and axial-vector generalised form factors are also computed as a function of the momentum transfer square up to about 1 GeV$^2$. The three ensembles allow us to check for unquenching effects and to assess lattice finite volume effects.
This work presents the first calculation in lattice QCD of three moments of spin-averaged and spin-polarized generalized parton distributions in the proton. It is shown that the slope of the associated generalized form factors decreases significantly as the moment increases, indicating that the transverse size of the light-cone quark distribution decreases as the momentum fraction of the struck parton increases.
We present the first calculation of the $x$-dependence of the proton generalized parton distributions (GPDs) within lattice QCD. Results are obtained for the isovector unpolarized and helicity GPDs. We compute the appropriate matrix elements of fast-moving protons coupled to non-local operators containing a Wilson line. We present results for proton momenta $0.83,,1.25,,1.67$ GeV, and momentum transfer squared $0.69,,1.38$ GeV$^2$. These combinations include cases with zero and nonzero skewness. The calculation is performed using one ensemble of two degenerate mass light, a strange and a charm quark of maximally twisted mass fermions with a clover term. The lattice results are matched to the light-cone GPDs using one-loop perturbation theory within the framework of large momentum effective theory. The final GPDs are given in the $overline{rm MS}$ scheme at a scale of 2 GeV.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا