We test a set of lattice gauge actions for QCD that suppress small plaquette values and in this way also suppress transitions between topological sectors. This is well suited for simulations in the epsilon-regime and it is expected to help in numerical simulations with dynamical quarks.
We explore gauge actions for lattice QCD, which are constructed such that the occurrence of small plaquette values is strongly suppressed. Such actions originate from the admissibility condition in order to conserve the topological charge. The suppression of small plaquette values is expected to be advantageous for numerical studies in the $epsilon$-regime and also for simulations with dynamical quarks. Performing simulations at a lattice spacing of about 0.1 fm, we present numerical results for the static potential, the physical scale $r_0$, the stability of the topological charge history, the condition number of the kernel of the overlap operator and the acceptance rate against the step size in the local HMC algorithm.
We explore gauge actions for lattice QCD, which are constructed such that the occurrence of small plaquette values is strongly suppressed. By choosing strong bare gauge couplings we arrive at values for the physical lattice spacings of O(0.1 fm). Such gauge actions tend to confine the Monte Carlo history to a single topological sector. This topological stability facilitates the collection of a large set of configurations in a specific sector, which is profitable for numerical studies in the epsilon-regime. The suppression of small plaquette values is also expected to be favourable for simulations with dynamical quarks. We use a local Hybrid Monte Carlo algorithm to simulate such actions, and we present numerical results for the static potential, the physical scale, the topological stability and the kernel condition number of the overlap Dirac operator. In addition we discuss the question of reflection positivity for a class of such gauge actions.
We investigate the continuum limit of a compact formulation of the lattice U(1) gauge theory in 4 dimensions using a nonperturbative gauge-fixed regularization. We find clear evidence of a continuous phase transition in the pure gauge theory for all values of the gauge coupling (with gauge symmetry restored). When probed with quenched staggered fermions with U(1) charge, the theory clearly has a chiral transition for large gauge couplings. We identify the only possible region in the parameter space where a continuum limit with nonperturbative physics may appear.
Since present Monte Carlo algorithms for lattice QCD may become trapped in a fixed topological charge sector, it is important to understand the effect of calculating at fixed topology. In this work, we show that although the restriction to a fixed topological sector becomes irrelevant in the infinite volume limit, it gives rise to characteristic finite size effects due to contributions from all $theta$-vacua. We calculate these effects and show how to extract physical results from numerical data obtained at fixed topology.
We study thermodynamics of SU(3) gauge theory at fixed scales on the lattice, where we vary temperature by changing the temporal lattice size N_t=(Ta_t)^{-1}. In the fixed scale approach, finite temperature simulations are performed on common lattice spacings and spatial volumes. Consequently, we can isolate thermal effects in observables from other uncertainties, such as lattice artifact, renormalization factor, and spatial volume effect. Furthermore, in the EOS calculations, the fixed scale approach is able to reduce computational costs for zero temperature subtraction and parameter search to find lines of constant physics, which are demanding in full QCD simulations. As a test of the approach, we study the thermodynamics of the SU(3) gauge theory on isotropic and anisotropic lattices. In addition to the equation of state, we calculate the critical temperature and the static quark free energy at a fixed scale.