No Arabic abstract
An uncontroversial observation of adjoint string breaking is proposed, while measuring the static potential from Wilson loops only. The overlap of the Wilson loop with the broken-string state is small, but non-vanishing, so that the broken-string groundstate can be seen if the Wilson loop is long enough. We demonstrate this in the context of the (2+1)d SU(2) adjoint static potential, using an improved version of the Luscher-Weisz exponential variance reduction. To complete the picture we perform the more usual multichannel analysis with two basis states, the unbroken-string state and the broken-string state (two so-called gluelumps). As by-products, we obtain the temperature-dependent static potential measured from Polyakov loop correlations, and the fundamental SU(2) static potential with improved accuracy. Comparing the latter with the adjoint potential, we see clear deviations from Casimir scaling.
We present results of our ongoing determination of string breaking in full QCD with N_f=2 Wilson fermions. Our investigation of the fission of the static quark-antiquark string into a static-light meson-antimeson system is based on dynamical configurations of size 24^3 x 40 produced by the TxL collaboration. Combining various optimization methods we determine the matrix elements of the two-by-two system with so far unprecedented accuracy. The all-to-all light quark propagators occurring in the transition element are computed from eigenmodes of the Hermitian Wilson-Dirac matrix complemented by stochastic estimates in the orthogonal subspace. We observe a clear signature for level-splitting between ground state and excited potential. Thus, for the first time, string breaking induced by sea quarks is observed in a simulation of 4-dimensional lattice-QCD.
We study the Wegner-Wilson loops in the string-net model of Levin and Wen in the presence of a string tension. The latter is responsible for a phase transition from a topological deconfined phase (weak tension) to a trivial confined phase (strong tension). We analyze the behavior of all Wegner-Wilson loops in both limiting cases for an arbitrary input theory of the string-net model. Using a fluxon picture, we compute perturbatively the first contributions to a perimeter law in the topological phase as a function of the quantum dimensions. In the trivial phase, we find that Wegner-Wilson loops obey a modified area law, in agreement with a recent mean-field approach.
We calculate Wilson loops of various sizes up to loop order $n=20$ for lattice sizes of $L^4 (L=4, 6, 8, 12)$ using the technique of Numerical Stochastic Perturbation Theory in quenched QCD. This allows to investigate the behaviour of the perturbative series at high orders. We discuss three models to estimate the perturbative series: a renormalon inspired fit, a heuristic fit based on an assumed power-law singularity and boosted perturbation theory. We have found differences in the behavior of the perturbative series for smaller and larger Wilson loops at moderate $n$. A factorial growth of the coefficients could not be confirmed up to $n=20$. From Monte Carlo measured plaquette data and our perturbative result we estimate a value of the gluon condensate $<frac{alpha}{pi}GG>$.
We calculate perturbative Wilson loops of various sizes up to loop order $n=20$ at different lattice sizes for pure plaquette and tree-level improved Symanzik gauge theories using the technique of Numerical Stochastic Perturbation Theory. This allows us to investigate the behavior of the perturbative series at high orders. We observe differences in the behavior of perturbative coefficients as a function of the loop order. Up to $n=20$ we do not see evidence for the often assumed factorial growth of the coefficients. Based on the observed behavior we sum this series in a model with hypergeometric functions. Alternatively we estimate the series in boosted perturbation theory. Subtracting the estimated perturbative series for the average plaquette from the non-perturbative Monte Carlo result we estimate the gluon condensate.
We calculate Wilson loops of various sizes up to 20 loops in SU(3) pure lattice gauge theory at different lattice sizes for Wilson gauge action using the technique of numerical stochastic perturbation theory. This allows us to investigate the perturbative series for various Wilson loops at high loop orders. We observe differences in the behavior of those series as function of the loop order. Up to $n=20$ we do not find evidence for the factorial growth of the expansion coefficients often assumed to characterize an asymptotic series. Based on the actually observed behavior we sum the series in a model parametrized by hypergeometric functions. Alternatively we estimate the total series in boosted perturbation theory using information from the first 14 loops. We introduce generalized ratios of Wilson loops of different sizes. Together with the corresponding Wilson loops from standard Monte Carlo measurements they enable us to assess their non-perturbative parts.