Do you want to publish a course? Click here

Constraints on neutrino oscillation parameters from the measurement of day-night solar neutrino fluxes at Super-Kamiokande

93   0   0.0 ( 0 )
 Added by Kunio Inoue
 Publication date 1998
  fields
and research's language is English




Ask ChatGPT about the research

A search for day-night variations in the solar neutrino flux resulting from neutrino oscillations has been carried out using the 504 day sample of solar neutrino data obtained at Super-Kamiokande. The absence of a significant day-night variation has set an absolute flux independent exclusion region in the two neutrino oscillation parameter space.



rate research

Read More

An analysis of atmospheric neutrino data from all four run periods of superk optimized for sensitivity to the neutrino mass hierarchy is presented. Confidence intervals for $Delta m^2_{32}$, $sin^2 theta_{23}$, $sin^2 theta_{13}$ and $delta_{CP}$ are presented for normal neutrino mass hierarchy and inverted neutrino mass hierarchy hypotheses based on atmospheric neutrino data alone. Additional constraints from reactor data on $theta_{13}$ and from published binned T2K data on muon neutrino disappearance and electron neutrino appearance are added to the atmospheric neutrino fit to give enhanced constraints on the above parameters. Over the range of parameters allowed at 90% confidence level, the normal mass hierarchy is favored by between 91.5% and 94.5% based on the combined result.
130 - K. Abe , Y. Hayato , T. Iida 2010
The results of the third phase of the Super-Kamiokande solar neutrino measurement are presented and compared to the first and second phase results. With improved detector calibrations, a full detector simulation, and improved analysis methods, the systematic uncertainty on the total neutrino flux is estimated to be ?2.1%, which is about two thirds of the systematic uncertainty for the first phase of Super-Kamiokande. The observed 8B solar flux in the 5.0 to 20 MeV total electron energy region is 2.32+/-0.04 (stat.)+/-0.05 (sys.) *10^6 cm^-2sec^-1, in agreement with previous measurements. A combined oscillation analysis is carried out using SK-I, II, and III data, and the results are also combined with the results of other solar neutrino experiments. The best-fit oscillation parameters are obtained to be sin^2 {theta}12 = 0.30+0.02-0.01(tan^2 {theta}12 = 0.42+0.04 -0.02) and {Delta}m2_21 = 6.2+1.1-1.9 *10^-5eV^2. Combined with KamLAND results, the best-fit oscillation parameters are found to be sin^2 {theta}12 = 0.31+/-0.01(tan^2 {theta}12 = 0.44+/-0.03) and {Delta}m2_21 = 7.6?0.2*10^-5eV^2 . The 8B neutrino flux obtained from global solar neutrino experiments is 5.3+/-0.2(stat.+sys.)*10^6cm^-2s^-1, while the 8B flux becomes 5.1+/-0.1(stat.+sys.)*10^6cm^-2s^-1 by adding KamLAND result. In a three-flavor analysis combining all solar neutrino experiments, the upper limit of sin^2 {theta}13 is 0.060 at 95% C.L.. After combination with KamLAND results, the upper limit of sin^2 {theta}13 is found to be 0.059 at 95% C.L..
Upgraded electronics, improved water system dynamics, better calibration and analysis techniques allowed Super-Kamiokande-IV to clearly observe very low-energy 8B solar neutrino interactions, with recoil electron kinetic energies as low as 3.49 MeV. Super-Kamiokande-IV data-taking began in September of 2008; this paper includes data until February 2014, a total livetime of 1664 days. The measured solar neutrino flux is (2.308+-0.020(stat.) + 0.039-0.040(syst.)) x 106/(cm2sec) assuming no oscillations. The observed recoil electron energy spectrum is consistent with no distortions due to neutrino oscillations. An extended maximum likelihood fit to the amplitude of the expected solar zenith angle variation of the neutrino-electron elastic scattering rate in SK-IV results in a day/night asymmetry of (-3.6+-1.6(stat.)+-0.6(syst.))%. The SK-IV solar neutrino data determine the solar mixing angle as sin2 theta_12 = 0.327+0.026-0.031, all SK solar data (SK-I, SK-II, SK III and SKIV) measures this angle to be sin2 theta_12 = 0.334+0.027-0.023, the determined mass-squared splitting is Delta m2_21 = 4.8+1.5-0.8 x10-5 eV2.
A new Super-Kamiokande (SK) search for Supernova Relic Neutrinos (SRNs) was conducted using 2853 live days of data. Sensitivity is now greatly improved compared to the 2003 SK result, which placed a flux limit near many theoretical predictions. This more detailed analysis includes a variety of improvements such as increased efficiency, a lower energy threshold, and an expanded data set. New combined upper limits on SRN flux are between 2.8 and 3.0 nu_e cm^-2 s^-1 > 16 MeV total positron energy (17.3 MeV E_nu).
172 - E. Konishi 2010
It is said that the finding of the maximum oscillation in neutrino oscillation by Super-Kamiokande is one of the major achievements of the SK. In present paper, we examine the assumption made by Super-Kamiokande Collaboration that the direction of the incident neutrino is approximately the same as that of the produced lepton, which is the cornerstone in their L/E analysis and we find this approximation does not hold even approximately. In the Part 2 of the subsequent paper, we apply the results from Figures 12, 13 and 14 to L/E analysis and conclude that one cannot obtain the maximum oscillation in L/E analysis which shows strongly the oscillation pattern from the neutrino oscillation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا