No Arabic abstract
We describe the development and testing of a novel beam stop for use in a rare kaon decay experiment at the Brookhaven AGS. The beam stop is located inside a dipole spectrometer magnet in close proximity to straw drift chambers and intercepts a high-intensity neutral hadron beam. The design process, involving both Monte Carlo simulations and beam tests of alternative beam-stop shielding arrangements, had the goal of minimizing the leakage of particles from the beam stop and the resulting hit rates in detectors, while preserving maximum acceptance for events of interest. The beam tests consisted of measurements of rates in drift chambers, scintilation counter hodoscopes, a gas threshold Cherenkov counter, and a lead glass array. Measurements were also made with a set of specialized detectors which were sensitive to low-energy neutrons, photons, and charged particles. Comparisons are made between these measurements and a detailed Monte Carlo simulation.
The rare kaon decays $Ktopiell^+ell^-$ and $Ktopi ubar{ u}$ are flavor changing neutral current (FCNC) processes and hence promising channels with which to probe the limits of the standard model and to look for signs of new physics. In this paper we demonstrate the feasibility of lattice calculations of $Ktopiell^+ell^-$ decay amplitudes for which long-distance contributions are very significant. We show that the dominant finite-volume corrections (those decreasing as powers of the volume) are negligibly small and that, in the four-flavor theory, no new ultraviolet divergences appear as the electromagnetic current $J$ and the effective weak Hamiltonian $H_W$ approach each other. In addition, we demonstrate that one can remove the unphysical terms which grow exponentially with the range of the integration over the time separation between $J$ and $H_W$. We will now proceed to exploratory numerical studies with the aim of motivating further experimental measurements of these decays. Our work extends the earlier study by Isidori, Turchetti and Martinelli which focussed largely on the renormalization of ultraviolet divergences. In a companion paper we discuss the evaluation of the long-distance contributions to $Ktopi ubar{ u}$ decays; these contributions are expected to be at the level of a few percent for $K^+$ decays.
The rare kaon decays $Ktopi ubar{ u}$ are strongly suppressed in the standard model and widely regarded as processes in which new phenomena, not predicted by the standard model, may be observed. Recognizing such new phenomena requires precise standard model prediction for the braching ratio of $Ktopi ubar{ u}$ with controlled uncertainty for both short-distance and long-distance contributions. In this work we demonstrate the feasibility of lattice QCD calculation of the long-distance contribution to rare kaon decays with the emphasis on $K^+topi^+ ubar{ u}$. Our methodology covers the calculation of both $W$-$W$ and $Z$-exchange diagrams. We discuss the estimation of the power-law, finite-volume corrections and two methods to consistently combine the long distance contribution determined by the lattice methods outlined here with the short distance parts that can be reliably determined using perturbation theory. It is a subsequent work of our first methodology paper on $Ktopiell^+ell^-$, where the focus was made on the $gamma$-exchange diagrams.
ORKA is a proposed experiment to measure the K+ -> pi+nunubar branching ratio with 5% precision using the Fermilab Main Injector high-intensity proton source. The detector design is based on the BNL E787/E949 experiments, which detected seven K+ -> pi+nunubar candidate events. ORKA is expected to acheive two orders of magnitude improvement in sensitivity relative to the BNL experiments as a result of enhancements to the beam line and the detector acceptance. Precise measurement of the K+ -> pi+nunubar branching ratio with the same level of uncertainty as the well-understood Standard Model prediction allows for sensitivity to new physics at and beyond the LHC mass scale. Detector R&D, simulation-based optimization of the experiment design, and preparation of the experiment location are underway.
ORKA is a proposed experiment to measure the K+ -> pi+ nu nubar branching ratio with 5% precision using the Fermilab Main Injector high intensity proton source. The detector design is based on the BNL E787/E949 experiments, which detected seven candidate events. Two orders of magnitude improvement in sensitivity relative to the BNL experiments comes from enhancements to the beam line and the detector acceptance. Precise measurement of the K+ -> pi+ nu nubar branching ratio with the same level of uncertainty as the well-understood Standard Model prediction allows for sensitivity to new physics at and beyond the LHC mass scale.
Recent NA48 results from detailed studies of $K_{L,S}to pi^+ pi^- e^+ e^-$ and $K_Stopi^0 gammagamma$ decay modes are presented. The results are based on the data collected with the NA48 detector at the CERN SPS during the 1998-199 9 and 2000 data taking periods, respectively. Prospects for future results on charged kaon decays are briefly described.