No Arabic abstract
The decays Upsilon(4S) -> BB, followed by B -> D* pi and D* -> D pi, permit reconstruction of all kinematic quantities that describe the sequence without reconstruction of the D, with reasonably low backgrounds. Using an integrated e+e- luminosity of 3.1 fb^{-1} accumulated at the Upsilon(4S) by the CLEO-II detector, we report measurements of BR(B0 -> D*+ pi-) = (2.81 +/- 0.11 +/- 0.21 +/- 0.05) x 10^{-3} and BR(B- -> D*0 pi-) = (4.34 +/- 0.33 +/- 0.34 +/- 0.18) x 10^{-3}.
We report measurements of branching fractions for charged and neutral $Bto eta_c K$ decays where the $eta_c$ meson is reconstructed in the $K_S^0 K^{pm}pi^{mp}, K^+ K^- pi^0, K^{*0} K^-pi^+$ and $p bar{p}$ decay channels. The neutral $B^0$ channel is a CP eigenstate and can be used to measure the CP violation parameter $sin 2phi_1$. We also report the first observation of the $B^0to eta_c K^{*0}$ mode. The results are based on an analysis of 29.1 fb$^{-1}$ of data collected by the Belle detector at KEKB.
The branching fractions of the doubly Cabibbo-suppressed decays $D^+rightarrow K^-K^+K^+$, $D^+rightarrow pi^-pi^+K^+$ and $D^+_srightarrowpi^-K^+K^+$ are measured using the decays $D^+rightarrow K^-pi^+pi^+$ and $D^+_srightarrow K^-K^+pi^+$ as normalisation channels. The measurements are performed using proton-proton collision data collected with the LHCb detector at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 2.0 fb$^{-1}$. The results are begin{align} frac {mathcal{B}(D^+rightarrow K^-K^+K^+)} {mathcal{B}(D^+rightarrow K^-pi^+pi^+)}& = (6.541 pm 0.025 pm 0.042) times 10^{-4}, onumber frac {mathcal{B}(D^+rightarrow pi^-pi^+K^+)} {mathcal{B}(D^+rightarrow K^-pi^+pi^+)}& = (5.231 pm 0.009 pm 0.023) times 10^{-3}, onumber frac {mathcal{B}(D^+_srightarrowpi^-K^+K^+)} {mathcal{B}(D^+_srightarrow K^-K^+pi^+)}& = (2.372 pm 0.024 pm 0.025) times 10^{-3}, onumber end{align} where the uncertainties are statistical and systematic, respectively. These are the most precise measurements up to date.
We report on a measurement of the branching fractions for B- --> D(*)+ pi- l- nu-bar and B0bar --> D(*)0 pi+ l- nu-bar with 275 million BBbar events collected at the Upsilon(4S) resonance with the Belle detector at KEKB. Events are tagged by fully reconstructing one of the B mesons in hadronic modes. We obtain Br(B- --> D+ pi- l- nu-bar) = (0.54 +/- 0.07(stat) +/- 0.07(syst) +/- 0.06(BR)) x 10^-2, Br(B- --> D*+ pi- l- nu-bar) = (0.67 +/- 0.11(stat) +/- 0.09(syst) +/- 0.03(BR)) x 10^-2, Br(B0bar --> D0 pi+ l- nu-bar) = (0.33 +/- 0.06(stat) +/- 0.06(syst) +/- 0.03(BR)) x 10^-2, Br(B0bar --> D*0 pi+ l- nu-bar) = (0.65 +/- 0.12(stat) +/- 0.08(syst) +/- 0.05(BR)) x 10^-2, where the third error comes from the error on Bbar --> D(*) l- nu-bar decays. Contributions from B0bar --> D*+ l- nu-bar decays are excluded in the measurement of B0bar --> D0 pi+ l- nu-bar.
Using 482 pb$^{-1}$ of data taken at $sqrt{s}=4.009$ GeV, we measure the branching fractions of the decays of $D^{*0}$ into $D^0pi^0$ and $D^0gamma$ to be $BR(D^{*0} to D^0pi^0)=(65.5pm 0.8pm 0.5)%$ and $BR(D^{*0} to D^0gamma)=(34.5pm 0.8pm 0.5)%$ respectively, by assuming that the $D^{*0}$ decays only into these two modes. The ratio of the two branching fractions is $BR(D^{*0} to D^0pi^0)/BR(D^{*0} to D^0gamma) =1.90pm 0.07pm 0.05$, which is independent of the assumption made above. The first uncertainties are statistical and the second ones systematic. The precision is improved by a factor of three compared to the present world average values.
We study the decays of the J/psi and psi mesons to pi+pi-pi0 using data samples at both resonances collected with the BES III detector in 2009. We measure the corresponding branching fractions with unprecedented precision and provide mass spectra and Dalitz plots. The branching fraction for J/psi -> pi+pi-pi0 is determined to be (2.137 +- 0.004 (stat.) +0.058-0.056 (syst.) +0.027-0.026 (norm.))*10-2, and the branching fraction for psi -> pi+pi-pi0 is measured as (2.14 +- 0.03 (stat.) +0.08-0.07 (syst.) +0.09-0.08 (norm.))*10-4. The J/psi decay is found to be dominated by an intermediate rho(770) state, whereas the psi decay is dominated by di-pion masses around 2.2 GeV/c2, leading to strikingly different Dalitz distributions.