No Arabic abstract
Sensitive n-type and p-type germanium thermistors were fabricated by the melt doping technique and by the neutron transmutation doping (NTD) technique, respectively, aiming at a use for the cryogenic thermal detector, or bolometer of Tokyo dark matter search programme. We report on the measurements of the sensitivities of these thermistors. In particular, the p-type thermistors are sensitive enough to scale up our existing prototype LiF bolometer and realize a multiple array of the bolometers with the total absorber mass of about 1,kg.
The First results of the Tokyo dark matter search programme using a 21-g lithium fluoride bolometer are presented. The background spectrum was measured in the surface laboratory. We derive an exclusion plot for the spin-dependently coupled Weakly Interacting Massive Particles (WIMPs) cross section.
NEWAGE is a direction-sensitive dark matter search using a low-pressure gaseous time projection chamber. A low alpha-ray emission rate micro pixel chamber had been developed in order to reduce background for dark matter search. We conducted the dark matter search at the Kamioka Observatory in 2018. The total live time was 107.6 days corresponding to an exposure of 1.1 kg${cdot}$days. Two events remained in the energy region of 50-60 keV which was consistent with 2.5 events of the expected background. A directional analysis was carried out and no significant forward-backward asymmetry derived from the WIMP-nucleus elastic scatterings was found. Thus a 90% confidence level upper limit on Spin-Dependent WIMP-proton cross section of 50 pb for a WIMP mass of 100 GeV/c2 was derived. This limit is the most stringent yet obtained from direction-sensitive dark matter search experiments.
Several aspects of the analysis of the data obtained with the cryogenic heat-and-ionisation Ge detectors used by the EDELWEISS dark matter search experiment are presented. Their calibration, the determination of their energy threshold, fiducial volume and nuclear recoil acceptance are detailed.
The CRESST (Cryogenic Rare Event Search with Superconducting Thermometers) and the EURECA (European Underground Rare Event Calorimeter Array) experiments are direct dark matter search experiments where cryogenic detectors are used to detect spin-independent, coherent WIMP (Weakly Interacting Massive Particle)-nucleon scattering events by means of the recoil energy. The cryogenic detectors use a massive single crystal as absorber which is equipped with a TES (transition edge sensor) for signal read-out. They are operated at mK-temperatures. In order to enable a mass production of these detectors, as needed for the EURECA experiment, a so-called composite detector design (CDD) that allows decoupling of the TES fabrication from the optimization procedure of the absorber single-crystal was developed and studied. To further investigate, understand and optimize the performance of composite detectors a detailed thermal detector model which takes into account the CDD has been developed.
The status and plans of a research program on the development of ultra-low-energy germanium detectors with sub-keV sensitivities are reported. We survey the scientific goals which include the observation of neutrino-nucleus coherent scattering, the studies of neutrino magnetic moments, as well as the searches of WIMP dark matter. In particular, a threshold of 100-200 eV and a sub-keV background comparable to underground experiments were achieved with prototype detectors. New limits were set for WIMPs with mass between 3-6 GeV. The prospects of the realization of full-scale experiments are discussed.