Do you want to publish a course? Click here

Measurement of double beta decay of 100Mo to excited states in the NEMO 3 experiment

152   0   0.0 ( 0 )
 Added by Vera Kovalenko
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

The double beta decay of 100Mo to the 0^+_1 and 2^+_1 excited states of 100Ru is studied using the NEMO 3 data. After the analysis of 8024 h of data the half-life for the two-neutrino double beta decay of 100Mo to the excited 0^+_1 state is measured to be T^(2nu)_1/2 = [5.7^{+1.3}_{-0.9}(stat)+/-0.8(syst)]x 10^20 y. The signal-to-background ratio is equal to 3. Information about energy and angular distributions of emitted electrons is also obtained. No evidence for neutrinoless double beta decay to the excited 0^+_1 state has been found. The corresponding half-life limit is T^(0nu)_1/2(0^+ --> 0^+_1) > 8.9 x 10^22 y (at 90% C.L.). The search for the double beta decay to the 2^+_1 excited state has allowed the determination of limits on the half-life for the two neutrino mode T^(2nu)_1/2(0^+ --> 2^+_1) > 1.1 x 10^21 y (at 90% C.L.) and for the neutrinoless mode T^(0nu)_1/2(0^+ --> 2^+_1) > 1.6 x 10^23 y (at 90% C.L.).



rate research

Read More

In the double beta decay experiment NEMO~3 a precise knowledge of the background in the signal region is of outstanding importance. This article presents the methods used in NEMO~3 to evaluate the backgrounds resulting from most if not all possible origins. It also illustrates the power of the combined tracking-calorimetry technique used in the experiment.
The double-beta decay of 82Se to the 0+1 excited state of 82Kr has been studied with the NEMO-3 detector using 0.93 kg of enriched 82Se measured for 4.75 y, corresponding to an exposure of 4.42 kg y. A dedicated analysis to reconstruct the gamma-rays has been performed to search for events in the 2e2g channel. No evidence of a 2nbb decay to the 0+1 state has been observed and a limit of T2n 1/2(82Se; 0+gs -> 0+1) > 1.3 1021 y at 90% CL has been set. Concerning the 0nbb decay to the 0+1 state, a limit for this decay has been obtained with T0n 1/2(82Se; 0+g s -> 0+1) > 2.3 1022 y at 90% CL, independently from the 2nbb decay process. These results are obtained for the first time with a tracko-calo detector, reconstructing every particle in the final state.
181 - R. Arnold , C. Augier , J.D. Baker 2015
The NEMO-3 detector, which had been operating in the Modane Underground Laboratory from 2003 to 2010, was designed to search for neutrinoless double $beta$ ($0 ubetabeta$) decay. We report final results of a search for $0 ubetabeta$ decays with $6.914$ kg of $^{100}$Mo using the entire NEMO-3 data set with a detector live time of $4.96$ yr, which corresponds to an exposure of 34.3 kg$cdot$yr. We perform a detailed study of the expected background in the $0 ubetabeta$ signal region and find no evidence of $0 ubetabeta$ decays in the data. The level of observed background in the $0 ubetabeta$ signal region $[2.8-3.2]$ MeV is $0.44 pm 0.13$ counts/yr/kg, and no events are observed in the interval $[3.2-10]$ MeV. We therefore derive a lower limit on the half-life of $0 ubetabeta$ decays in $^{100}$Mo of $T_{1/2}(0 ubetabeta)> 1.1 times 10^{24}$ yr at the $90%$ Confidence Level, under the hypothesis of light Majorana neutrino exchange. Depending on the model used for calculating nuclear matrix elements, the limit for the effective Majorana neutrino mass lies in the range $langle m_{ u} rangle < 0.33$--$0.62$ eV. We also report constraints on other lepton-number violating mechanisms for $0 ubetabeta$ decays.
The NEMO-3 experiment at the Modane Underground Laboratory has investigated the double-$beta$ decay of $^{48}{rm Ca}$. Using $5.25$ yr of data recorded with a $6.99,{rm g}$ sample of $^{48}{rm Ca}$, approximately $150$ double-$beta$ decay candidate events have been selected with a signal-to-background ratio greater than $3$. The half-life for the two-neutrino double-$beta$ decay of $^{48}{rm Ca}$ has been measured to be $T^{2 u}_{1/2},=,[6.4, ^{+0.7}_{-0.6}{rm (stat.)} , ^{+1.2}_{-0.9}{rm (syst.)}] times 10^{19},{rm yr}$. A search for neutrinoless double-$beta$ decay of $^{48}{rm Ca}$ yields a null result and a corresponding lower limit on the half-life is found to be $T^{0 u}_{1/2} > 2.0 times 10^{22},{rm yr}$ at $90%$ confidence level, translating into an upper limit on the effective Majorana neutrino mass of $< m_{betabeta} > < 6.0 - 26$ ${rm eV}$, with the range reflecting different nuclear matrix element calculations. Limits are also set on models involving Majoron emission and right-handed currents.
141 - R. Arnold , J. Baker (3 2011
This Letter reports results from the NEMO-3 experiment based on an exposure of 1275 days with 661g of 130Te in the form of enriched and natural tellurium foils. The double beta decay rate of 130Te is found to be greater than zero with a significance of 7.7 standard deviations and the half-life is measured to be T1/2 = (7.0 +/- 0.9(stat) +/- 1.1(syst)) x 10^{20} yr. This represents the most precise measurement of this half-life yet published and the first real-time observation of this decay.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا