Do you want to publish a course? Click here

Precise determination of the spin structure function $mathbf{g_1}$ of the proton, deuteron and neutron

82   0   0.0 ( 0 )
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

Precise measurements of the spin structure functions of the proton $g_1^p(x,Q^2)$ and deuteron $g_1^d(x,Q^2)$ are presented over the kinematic range $0.0041 leq x leq 0.9$ and $0.18 $ GeV$^2$ $leq Q^2 leq 20$ GeV$^2$. The data were collected at the HERMES experiment at DESY, in deep-inelastic scattering of 27.6 GeV longitudinally polarized positrons off longitudinally polarized hydrogen and deuterium gas targets internal to the HERA storage ring. The neutron spin structure function $g_1^n$ is extracted by combining proton and deuteron data. The integrals of $g_1^{p,d}$ at $Q^2=5$ GeV$^2$ are evaluated over the measured $x$ range. Neglecting any possible contribution to the $g_1^d$ integral from the region $x leq 0.021$, a value of $0.330 pm 0.011mathrm{(theo.)}pm0.025mathrm{(exp.)}pm 0.028$(evol.) is obtained for the flavor-singlet axial charge $a_0$ in a leading-twist NNLO analysis.



rate research

Read More

New results for the double spin asymmetry $A_1^{rm p}$ and the proton longitudinal spin structure function $g_1^{rm p}$ are presented. They were obtained by the COMPASS collaboration using polarised 200 GeV muons scattered off a longitudinally polarised NH$_3$ target. The data were collected in 2011 and complement those recorded in 2007 at 160,GeV, in particular at lower values of $x$. They improve the statistical precision of $g_1^{rm p}(x)$ by about a factor of two in the region $xlesssim 0.02$. A next-to-leading order QCD fit to the $g_1$ world data is performed. It leads to a new determination of the quark spin contribution to the nucleon spin, $Delta Sigma$ ranging from 0.26 to 0.36, and to a re-evaluation of the first moment of $g_1^{rm p}$. The uncertainty of $Delta Sigma$ is mostly due to the large uncertainty in the present determinations of the gluon helicity distribution. A new evaluation of the Bjorken sum rule based on the COMPASS results for the non-singlet structure function $g_1^{rm NS}(x,Q^2)$ yields as ratio of the axial and vector coupling constants $|g_{rm A}/g_{rm V}| = 1.22 pm 0.05~({rm stat.}) pm 0.10~({rm syst.})$, which validates the sum rule to an accuracy of about 9%.
Final results are presented from the inclusive measurement of deep-inelastic polarised-muon scattering on longitudinally polarised deuterons using a $^6$LiD target. The data were taken at $160~{rm GeV}$ beam energy and the results are shown for the kinematic range $1~({rm GeV}/c)^2 < Q^2 < 100~({rm GeV}/c)^2$ in photon virtuality, $0.004<x<0.7$ in the Bjorken scaling variable and $W > 4~{rm GeV}/c^2$ in the mass of the hadronic final state. The deuteron double-spin asymmetry $A_1^{rm d}$ and the deuteron longitudinal-spin structure function $g_1^{rm d}$ are presented in bins of $x$ and $Q^2$. Towards lowest accessible values of $x$, $g_1^{rm d}$ decreases and becomes consistent with zero within uncertainties. The presented final $g_1^{rm d}$ values together with the recently published final $g_1^{rm p}$ values of COMPASS are used to again evaluate the Bjorken sum rule and perform the QCD fit to the $g_1$ world data at next-to-leading order of the strong coupling constant. In both cases, changes in central values of the resulting numbers are well within statistical uncertainties. The flavour-singlet axial charge $a_0$, {which is identified in the $overline{rm MS}$ renormalisation scheme with the total contribution of quark helicities to the nucleon spin}, is extracted from only the COMPASS deuteron data with negligible extrapolation uncertainty: $a_0 (Q^2 = 3~({rm GeV}/c)^2) = 0.32 pm 0.02_{rm stat} pm0.04_{rm syst} pm 0.05_{rm evol}$. Together with the recent results on the proton spin structure function $g_1^{rm p}$, the results on $g_1^{rm d}$ constitute the COMPASS legacy on the measurements of $g_1$ through inclusive spin-dependent deep inelastic scattering.
We perform a global analysis of all available spin-dependent proton structure function data, covering a large range of Q^2, 1 < Q^2 < 30 GeV^2, and calculate the lowest moment of the g_1 structure function as a function of Q^2. From the Q^2 dependence of the lowest moment we extract matrix elements of twist-4 operators, and determine the color electric and magnetic polarizabilities of the proton to be chi_E = 0.026 +- 0.015 (stat) + 0.021/-0.024 (sys) and chi_B = -0.013 -+ 0.007 (stat) - 0.010/+0.012 (sys), respectively.
126 - N. Guler , R.G. Fersch , S.E. Kuhn 2015
We present the final results for the deuteron spin structure functions obtained from the full data set collected with Jefferson Labs CLAS in 2000-2001. Polarized electrons with energies of 1.6, 2.5, 4.2 and 5.8 GeV were scattered from deuteron ($^{15}$ND$_3$) targets, dynamically polarized along the beam direction, and detected with CLAS. From the measured double spin asymmetry, the virtual photon absorption asymmetry $A_1^d$ and the polarized structure function $g_1^d$ were extracted over a wide kinematic range (0.05 GeV$^2 < Q^2 <$ 5 GeV$^2$ and 0.9 GeV $< W <$ 3 GeV). We use an unfolding procedure and a parametrization of the corresponding proton results to extract from these data the polarized structure functions $A_1^n$ and $g_1^n$ of the (bound) neutron, which are so far unknown in the resonance region, $W < 2$ GeV. We compare our final results, including several moments of the deuteron and neutron spin structure functions, with various theoretical models and expectations as well as parametrizations of the world data. The unprecedented precision and dense kinematic coverage of these data can aid in future extractions of polarized parton distributions, tests of perturbative QCD predictions for the quark polarization at large $x$, a better understanding of quark-hadron duality, and more precise values for higher-twist matrix elements in the framework of the Operator Product Expansion.
127 - Y. Prok , P. Bosted , N. Kvaltine 2014
The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at lab angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual DIS kinematics, Q^2>1 GeV^2 and the final-state invariant mass W>2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q^2 at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative QCD, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا