No Arabic abstract
New measurements of the reduced cross section $sigma_r^{D(3)}$ for the diffractive process $ep to eXY$ in the kinematic domain $12 leq Q^2 leq 90$ GeV$^2$, $0.01 leq beta leq 0.65$ and $xpom<0.1$ are presented. Data events recorded by the H1 detector during the years 1999--2000 and 2004 have been used, corresponding to a total integrated luminosity of 68 pb$^{-1}$. The measurements are derived in the same range as previous H1 data, namely $M_Y < 1.6$ GeV and $|t| < 1.0$ GeV$^2$. Two different analysis methods, rapidity gap and $M_X$, are used and similar results are obtained in the kinematic domain of overlap. Finally, together with previous data, the diffractive structure function measurements are analysed with a model based on the dipole formulation of diffractive scattering. It is found to give a very good description of the data over the whole kinematic range.
We report on the extraction of the structure functions F_2 and Delta xF_3 = xF_3nu-xF_3nub from CCFR neutrino-Fe and antineutrino-Fe differential cross sections. The extraction is performed in a physics model independent (PMI) way. This first measurement for Delta xF_3, which is useful in testing models of heavy charm production, is higher than current theoretical predictions. Within 5% the F_2 (PMI) values measured in neutrino and muon scattering are in agreement with the predictions of Next-to-Leading-Order PDFs (using massive charm production schemes), thus resolving the long-standing discrepancy between the two measurements.
This talk covers three contributions from H1: Measurement of the inclusive e^pm p scattering cross section at high inelasticity y and of the structure function F_L, Determination of the integrated luminosity at HERA using elastic QED Compton events and Inclusive deep inelastic scattering at high Q2 with longitudinally polarized lepton beams at HERA. These are new measurements mainly based on the full HREA-II data but include also those from HERA-I in the combination whenever it is relevant. The main results of these measurements are briefly summarized here.
We report on the extraction of the structure functions F_2 and Delta xF_3 = xF_3nu-xF_3nubar from CCFR neutrino-Fe and antineutrino-Fe differential cross sections. The extraction is performed in a physics model independent (PMI) way. This first measurement for Delta xF_3, which is useful in testing models of heavy charm production, is higher than current theoretical predictions. The F_2 (PMI) values measured in neutrino and muon scattering are in good agreement with the predictions of Next to Leading Order PDFs (using massive charm production schemes), thus resolving the long-standing discrepancy between the two sets of data.
We report the results of a new measurement of spin structure functions of the deuteron in the region of moderate momentum transfer ($Q^2$ = 0.27 -- 1.3 (GeV/c)$^2$) and final hadronic state mass in the nucleon resonance region ($W$ = 1.08 -- 2.0 GeV). We scattered a 2.5 GeV polarized continuous electron beam at Jefferson Lab off a dynamically polarized cryogenic solid state target ($^{15}$ND$_3$) and detected the scattered electrons with the CEBAF Large Acceptance Spectrometer (CLAS). From our data, we extract the longitudinal double spin asymmetry $A_{||}$ and the spin structure function $g_1^d$. Our data are generally in reasonable agreement with existing data from SLAC where they overlap, and they represent a substantial improvement in statistical precision. We compare our results with expectations for resonance asymmetries and extrapolated deep inelastic scaling results. Finally, we evaluate the first moment of the structure function $g_1^d$ and study its approach to both the deep inelastic limit at large $Q^2$ and to the Gerasimov-Drell-Hearn sum rule at the real photon limit ($Q^2 to 0$). We find that the first moment varies rapidly in the $Q^2$ range of our experiment and crosses zero at $Q^2$ between 0.5 and 0.8 (GeV/c)$^2$, indicating the importance of the $Delta$ resonance at these momentum transfers.
We present a search for excited neutrinos and electrons using all data collected by the H1 experiment at HERA at a center-of-mass energy of 320 GeV with an integrated luminosity of up to 435 pb$^{-1}$. No evidence for excited neutrino or electron production is found. Mass dependent exclusion limits are determined for the ratio of the coupling to the compositeness scale, $f/{Lambda}$. These limits greatly extend the excluded region to higher masses than has been possible in previous searches.