Do you want to publish a course? Click here

Coherent bremsstrahlung, boherent pair production, birefringence and polarimetry in the 20-170 GeV energy range using aligned crystals

244   0   0.0 ( 0 )
 Added by Armen Apyan
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

The processes of coherent bremsstrahlung (CB) and coherent pair production (CPP) based on aligned crystal targets have been studied in the energy range 20-170 GeV. The experimental arrangement allowed for measurements of single photon properties of these phenomena including their polarization dependences. This is significant as the theoretical description of CB and CPP is an area of active theoretical debate and development. With the theoretical approach used in this paper both the measured cross sections and polarization observables are predicted very well. This indicates a proper understanding of CB and CPP up to energies of 170 GeV. Birefringence in CPP on aligned crystals is applied to determine the polarization parameters in our measurements. New technologies for high energy photon beam optics including phase plates and polarimeters for linear and circular polarization are demonstrated in this experiment. Coherent bremsstrahlung for the strings-on-strings (SOS) orientation yields a larger enhancement for hard photons than CB for the channeling orientations of the crystal. Our measurements and our calculations indicate low photon polarizations for the high energy SOS photons.



rate research

Read More

The cross section for coherent pair production by linearly polarised photons in the 20-170 GeV energy range was measured for photon aligned incidence on ultra-high quality diamond and germanium crystals. The theoretical description of coherent bremsstrahlung and coherent pair production phenomena is an area of active theoretical debate and development. However, under our experimental conditions, the theory predicted the combined cross section and polarisation experimental observables very well indeed. In macroscopic terms, our experiment measured a birefringence effect in pair production in a crystal. This study of this effect also constituted a measurement of the energy dependent linear polarisation of photons produced by coherent bremsstrahlung in aligned crystals. New technologies for manipulating high energy photon beams can be realised based on an improved understanding of QED phenomena at these energies. In particular, this experiment demonstrates an efficient new polarimetry technique. The pair production measurements were done using two independent methods simultaneously. The more complex method using a magnet spectrometer showed that the simpler method using a multiplicity detector was also viable.
We investigate the coherent electron-positron pair creation by high-energy photons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross-section is derived for an arbitrary deformation field. The conditions are specified under which the influence of the deformation is considerable. The case is considered in detail when the photon enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for $mathrm{SiO}_{2}$ single crystal and Moliere parametrization of the screened atomic potentials in the case of the deformation field generated by the acoustic wave of $S$ type. In dependence of the parameters, the presence of deformation can either enhance or reduce the pair creation cross-section. This can be used to control the parameters of the positron sources for storage rings and colliders.
238 - V. V. Parazian 2009
We investigate the angular distribution of positrons in the coherent process electronpositron pair creation process by high-energy photons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross-section is derived for an arbitrary deformation field. The case is considered in detail when the photon enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for${mathrm{SiO}}_{2}$ and diamond single crystals and Moliere parameterization of the screened atomic potentials in the case of the deformation field generated by the acoustic wave of S-type.
We present the first experimental results on the use of a thick aligned Si crystal acting as a quarter wave plate to induce a degree of circular polarisation in a high energy linearly polarised photon beam. The linearly polarised photon beam is produced from coherent bremsstrahlung radiation by 178 GeV unpolarised electrons incident on an aligned Si crystal, acting as a radiator. The linear polarisation of the photon beam is characterised by measuring the asymmetry in electron-positron pair production in a Ge crystal, for different crystal orientations. The Ge crystal therefore acts as an analyser. The birefringence phenomenon, which converts the linear polarisation to circular polarisation, is observed by letting the linearly polarised photons beam pass through a thick Si quarter wave plate crystal, and then measuring the asymmetry in electron-positron pair production again for a selection of relative angles between the crystallographic planes of the radiator, analyser and quarter wave plate. The systematics of the difference between the measured asymmetries with and without the quarter wave plate are predicted by theory to reveal an evolution in the Stokes parameters from which the appearance of a circularly polarised component in the photon beam can be demonstrated. The measured magnitude of the circularly polarised component was consistent with the theoretical predictions, and therefore is in indication of the existence of the birefringence effect.
The production of non-phi K+K- pairs by protons of 2.83 GeV kinetic energy on C, Cu, Ag, and Au targets has been investigated using the COSY-ANKE magnetic spectrometer. The K- momentum dependence of the differential cross section has been measured at small angles over the 0.2--0.9 GeV/c range. The comparison of the data with detailed model calculations indicates an attractive K- -nucleus potential of about -60 MeV at normal nuclear matter density at a mean momentum of 0.5 GeV/c. However, this approach has difficulty in reproducing the smallness of the observed cross sections at low K- momenta.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا