The ITEP-PNPI collaboration presents new results of the measurements of the spin rotation parameter A in the elastic scattering of negative pions on protons at P_beam=1.43 GeV/c. The results are compared to the predictions of several partial wave analyses. The experiment was performed at the ITEP proton synchrotron, Moscow.
The ITEP-PNPI collaboration presents the results of the measurements of the spin rotation parameter A in the elastic scattering of positive and negative pions on protons at P_beam = 1.62 GeV/c. The setup included a longitudinally-polarized proton target with superconductive magnet, multiwire spark chambers and a carbon polarimeter with thick filter. Results are compared to the predictions of partial wave analyses. The experiment was performed at the ITEP proton synchrotron, Moscow.
The asymmetry parameter P was measured for the elastic pion-proton scattering in the very backward angular region of theta_cm ~ 150-170^o at several pion beam energies in the invariant mass range containing most of the pion-proton resonances. The general goal of the experimental program was to provide new data for partial wave analyses in order to resolve their uncertainties in the baryon resonance region to allow the unambiguous baryon spectrum reconstructions. Until recently the parameter P was not measured in the examined domain that might be explained by the extremely low cross section. At the same time the predictions of various partial wave analyses are far from agreement in some kinematic areas and specifically those areas were chosen for the measurements where the disagreement is most pronouncing. The experiment was performed at the ITEP U-10 proton synchrotron, Moscow, by the ITEP-PNPI collaboration in the latest 5 years.
The analyzing power for proton-carbon elastic scattering in the coulomb-nuclear interference region of momentum transfer, $9.0times10^{-3}<-t<4.1times10^{-2}$ (GeV/$c)^{2}$, was measured with a 21.7 GeV/$c$ polarized proton beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory. The ratio of hadronic spin-flip to non-flip amplitude, $r_5$, was obtained from the analyzing power to be $text{Re} r_5=0.088pm 0.058$ and $text{Im} r_5=-0.161pm 0.226$.
The proton--proton elastic differential cross section at very small four momentum transfer squared has been measured at three different incident proton momenta in the range of 2.5 to 3.2 GeV/c by detecting the recoil proton at polar angles close to $90^circ$. The measurement was performed at COSY with the KOALA detector covering the Coulomb-nuclear interference region. The total cross section $sigma_text{tot}$, which has been determined precisely, is consistent with previous measurements. The values of the slope parameter $B$ and the relative real amplitude ratio $rho$ determined in this experiment alleviate the lack of data in the relevant energy region. This precise data on $rho$ might be an important check for a new dispersion analysis.
The proton analysing power in $vec{p}p$ elastic scattering has been measured at small angles at COSY-ANKE at 796 MeV and five other beam energies between 1.6 and 2.4 GeV using a polarised proton beam. The asymmetries obtained by detecting the fast proton in the ANKE forward detector or the slow recoil proton in a silicon tracking telescope are completely consistent. Although the analysing power results agree well with the many published data at 796 MeV, and also with the most recent partial wave solution at this energy, the ANKE data at the higher energies lie well above the predictions of this solution at small angles. An updated phase shift analysis that uses the ANKE results together with the World data leads to a much better description of these new measurements.