No Arabic abstract
We report on a search for Bs -> mu+mu- and Bd -> mu+mu- decays in ppbar collisions at sqrt(S) = 1.96 TeV using 364 pb-1 of data collected by the CDF II detector at the Fermilab Tevatron Collider. After applying all selection requirements, we observe no candidates inside the Bs or Bd mass windows, consistent with the background expectation. The resulting upper limits on the branching fractions are B(Bs -> mu+mu-) < 1.5E10-7 and B(Bd -> mu+mu-) < 3.9E-8 at 90% confidence level.
A search for the decays Bs -> mu+ mu- and B0 -> mu+ mu- is performed with 0.37 fb^-1 of pp collisions at sqrt{s} = 7 TeV collected by the LHCb experiment in 2011. The upper limits on the branching fractions are BR (Bs -> mu+ mu-) < 1.6 x 10^-8 and BR(B0 -> mu+ mu-) < 3.6 x 10^-9 at 95% confidence level. A combination of these results with the LHCb limits obtained with the 2010 dataset leads to BR (Bs -> mu+ mu-) < 1.4 x 10^-8 and BR (B0 -> mu+ mu-) < 3.2 x 10^-9 at 95% confidence level.
A search for Bs -> mu+ mu- and B0 -> mu+ mu- decays is performed using 1.0 fb^-1 of pp collision data collected at sqrt{s}=7 TeV with the LHCb experiment at the Large Hadron Collider. For both decays the number of observed events is consistent with expectation from background and Standard Model signal predictions. Upper limits on the branching fractions are determined to be BR(Bs -> mu+ mu-) < 4.5 (3.8) x 10^-9 and BR(B0 -> mu+ mu-) < 1.0 (0.81) x 10^-9 at 95% (90%) confidence level.
oindent A search for the decays $B^0_{s}rightarrow mu^+ mu^- mu^+ mu^-$ and $B^0 rightarrow mu^+ mu^- mu^+ mu^-$ is performed using data, corresponding to an integrated luminosity of 1.0ensuremath{{,fb}^{-1}}xspace, collected with the LHCb detector in 2011. The number of candidates observed is consistent with the expected background and, assuming phase-space models of the decays, limits on the branching fractions are set: {${ensuremath{cal B}xspace}(B^0_{s}rightarrow mu^+ mu^- mu^+ mu^-) < 1.6 (1.2) times 10^{-8}$} and {${ensuremath{cal B}xspace}(B^0 rightarrow mu^+ mu^- mu^+ mu^-)< 6.6 (5.3) times 10^{-9}$} at 95,% (90,%) confidence level. In addition, limits are set in the context of a supersymmetric model which allows for the $B^0_{(s)}$ meson to decay into a scalar ($S$) and pseudoscalar particle ($P$), where $S$ and $P$ have masses of 2.5 GeV and 214.3 MeV, respectively, both resonances decay into $mu^+mu^-$. The branching fraction limits for these decays are {${ensuremath{cal B}xspace}(ensuremath{B^0_{s}rightarrow SP}xspace) < 1.6 (1.2) times 10^{-8}$} and {${ensuremath{cal B}xspace}(ensuremath{B^0rightarrow SP}xspace)< 6.3 (5.1) times 10^{-9}$} at 95% (90%) confidence level.
Searches are performed for both prompt-like and long-lived dark photons, $A$, produced in proton-proton collisions at a center-of-mass energy of 13 TeV. These searches look for $A!to!mu^+mu^-$ decays using a data sample corresponding to an integrated luminosity of 5.5/fb collected with the LHCb detector. Neither search finds evidence for a signal, and 90% confidence-level exclusion limits are placed on the $gamma$-$A$ kinetic-mixing strength. The prompt-like $A$ search explores the mass region from near the dimuon threshold up to 70 GeV, and places the most stringent constraints to date on dark photons with $214 < m(A) lesssim 740$ MeV and $10.6 < m(A) lesssim 30$ GeV. The search for long-lived $A!to!mu^+mu^-$ decays places world-leading constraints on low-mass dark photons with lifetimes $mathcal{O}(1)$ ps.
A search for non-resonant D+(s) to pi+mu+mu- and D+(s) to pi-mu+mu+ decays is performed using proton-proton collision data, corresponding to an integrated luminosity of 1.0 fb-1, at sqrt(s) = 7 TeV recorded by the LHCb experiment in 2011. No signals are observed and the 90% (95%) confidence level (CL) limits on the branching fractions are B(D+ to pi+mu+mu-) < 7.3 (8.3) x 10-8, B(Ds+ to pi+mu+mu-) < 4.1 (4.8) x 10-7, B(D+ to pi-mu+mu+) < 2.2 (2.5) x 10-8, B(Ds+ to pi-mu+mu+) < 1.2 (1.4) x 10-7. These limits are the most stringent to date.