Do you want to publish a course? Click here

Search for nuclearites with the SLIM detector

51   0   0.0 ( 0 )
 Added by Vlad Popa
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

We discuss the properties of cosmic ray nuclearites, from the point of view of their search with large nuclear track detector arrays exposed at different altitudes, in particular with the SLIM experiment at the Chacaltaya high altitude lab (5290 m a.s.l.). We present calculations concerning their propagation in the Earth atmosphere and discuss their possible detection with CR39 and Makrofol nuclear track detectors.



rate research

Read More

The strange quark matter (SQM) may be the ground state of QCD; nuggets of SQM could be present in cosmic rays (CR). SLIM is a large area experiment, using CR39 and Makrofol track etch detectors, presently deployed at the high altitude CR Laboratory of Chacaltaya, Bolivia. We discuss the expected properties of SQM, from the point of view of its search with SLIM. We present also some preliminary results from SLIM.
SLIM is a large area experiment (440 m2) installed at the Chacaltaya cosmic ray laboratory since 2001, and about 100 m2 at Koksil, Himalaya, since 2003. It is devoted to the search for intermediate mass magnetic monopoles (107-1013 GeV/c2) and nuclearites in the cosmic radiation using stacks of CR39 and Makrofol nuclear track detectors. In four years of operation it will reach a sensitivity to a flux of about 10-15 cm-2 s-1 sr-1. We present the results of the calibration of CR39 and Makrofol and the analysis of a first sample of the exposed detector.
The search for magnetic monopoles in the cosmic radiation remains one of the main aims of non-accelerator particle astrophysics. Experiments at high altitude allow lower mass thresholds with respect to detectors at sea level or underground. The SLIM experiment is a large array of nuclear track detectors at the Chacaltaya High Altitude Laboratory (5290 m a.s.l.). The results from the analysis of 171 m$^2$ exposed for more than 3.5 y are here reported. The completion of the analysis of the whole detector will allow to set the lowest flux upper limit for Magnetic Monopoles in the mass range 10$^5$ - 10$^{12}$ GeV. The experiment is also sensitive to SQM nuggets and Q-balls, which are possible Dark Matter candidates.
The SLIM experiment was a large array of nuclear track detectors located at the Chacaltaya high altitude Laboratory (5230 m a.s.l.). The detector was in particular sensitive to Intermediate Mass Magnetic Monopoles, with masses 10^5 < M <10^{12} GeV. From the analysis of the full detector exposed for more than 4 years a flux upper limit of 1.3 x 10^{-15} cm^{-2} s^{-1} sr^{-1} for downgoing fast Intermediate Mass Monopoles was established at the 90% C.L.
181 - Sergey A. Uzunyan 2009
We report on D0 searches for leptoquarks (LQ) predicted in extended gauge theories and composite models to explain the symmetry between quarks and leptons. Data samples obtained with the D0 detector from proton-antiproton collisions at a center-of-mass energy of 1.96 TeV corresponding to intergrated luminosities of 1--4 inverse-fb were analyzed. No evidence for the production of such particles were observed and lower limits on leptoquark masses are set.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا