We report the result from a search for charged-current coherent pion production induced by muon neutrinos with a mean energy of 1.3 GeV. The data are collected with a fully active scintillator detector in the K2K long-baseline neutrino oscillation experiment. No evidence for coherent pion production is observed and an upper limit of $0.60 times 10^{-2}$ is set on the cross section ratio of coherent pion production to the total charged-current interaction at 90% confidence level. This is the first experimental limit for coherent charged pion production in the energy region of a few GeV.
We report on the first cross section measurements for charged current coherent pion production by neutrinos and antineutrinos on argon. These measurements are performed using the ArgoNeuT detector exposed to the NuMI beam at Fermilab. The cross sections are measured to be $2.6^{+1.2}_{-1.0}(stat)^{+0.3}_{-0.4}(syst) times 10^{-38} textrm{cm}^{2}/textrm{Ar}$ for neutrinos at a mean energy of $9.6$ GeV and $5.5^{+2.6}_{-2.1}(stat)^{+0.6}_{-0.7}(syst) times 10^{-39} textrm{cm}^{2}/textrm{Ar}$ for antineutrinos at a mean energy of $3.6$ GeV.
The SciBooNE Collaboration reports a measurement of neutral current coherent neutral pion production on carbon by a muon neutrino beam with average energy 0.8 GeV. The separation of coherent from inclusive neutral pion production has been improved by detecting recoil protons from resonant neutral pion production. We measure the ratio of the neutral current coherent neutral pion production to total charged current cross sections to be (1.16 +/- 0.24) x 10-2. The ratio of charged current coherent pion to neutral current coherent pion production is calculated to be 0.14+0.30 -0.28, using our published charged current coherent pion measurement.
The fixed-target MIPP experiment, Fermilab E907, was designed to measure the production of hadrons from the collisions of hadrons of momenta ranging from 5 to 120 GeV/c on a variety of nuclei. These data will generally improve the simulation of particle detectors and predictions of particle beam fluxes at accelerators. The spectrometer momentum resolution is between 3 and 4%, and particle identification is performed for particles ranging between 0.3 and 80 GeV/c using $dE/dx$, time-of-flight and Cherenkov radiation measurements. MIPP collected $1.42 times10^6$ events of 120 GeV Main Injector protons striking a target used in the NuMI facility at Fermilab. The data have been analyzed and we present here charged pion yields per proton-on-target determined in bins of longitudinal and transverse momentum between 0.5 and 80 GeV/c, with combined statistical and systematic relative uncertainties between 5 and 10%.
In this article, we present the charged and neutral current coherent pion production in the neutrino-nucleus interaction in the resonance region using the formalism based on the partially conserved axial current (PCAC) theorem which relates the neutrino-nucleus cross section to the pion-nucleus elastic cross section. The pion nucleus elastic cross section is calculated using the Glauber model approach. We calculate the integrated cross sections for neutrino-carbon, neutrino-iron and neutrino-oxygen scattering. The results of integrated cross-section calculations are compared with the measured data
Neutrino-induced coherent charged pion production on nuclei, $stackrel{(-)}{ u}_mu Atomu^pmpi^mp A$ is a rare, inelastic interaction in which a small squared four-momentum $| t|$ is transferred to the recoil nucleus leaving it intact in the reaction. In the scintillator tracker of MINERvA, we remove events with evidence of particles from nuclear breakup and reconstruct $| t|$ from the final state pion and muon. We select low $| t|$ events to isolate a sample rich in coherent candidates. By selecting low $| t|$ events we produce a model-independent measurement of the differential cross section for coherent scattering of neutrinos and anti-neutrinos on carbon. We find poor agreement with the predicted kinematics in neutrino generators used by current oscillation experiments.