We present results on time-dependent CP asymmetries in neutral B decays to several CP eigenstates. The measurements use a data sample of about 227 million Upsilon(4S) -> BBbar decays collected by the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. The amplitude of the CP asymmetry, sin2Beta in the Standard Model, is derived from decay-time distributions from events in which one neutral B meson is fully reconstructed in a final state containing a charmonium meson and the other $B$ meson is determined to be either a B0 or B0bar from its decay products. We measure sin2Beta = 0.722 +/- 0.040 (stat.) +/- 0.23 (syst.) in agreement with the Standard Model expectation.
We present a precise measurement of the CP violation parameter sin2phi_1 and the direct CP violation parameter A_f using the final data sample of 772x10^6 Bbar B pairs collected at the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e- collider. One neutral B meson is reconstructed in a J/psi K0S, psi(2S) K0S, chi_c1 K0S or J/psi K0L CP-eigenstate and its flavor is identified from the decay products of the accompanying B meson. From the distribution of proper time intervals between the two B decays, we obtain the following CP violation parameters: sin2phi_1=0.667+-0.023(stat)+-0.012(syst) and A_f=0.006+-0.016(stat)+-0.012(syst).
We present a measurement of the time-dependent charge-parity (CP) violation parameters in B0 -> pi+ pi- decays. The results are obtained from the final data sample containing 772 million BBbar pairs collected at the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e- collider. We obtain the CP violation parameters Acp = +0.33 +/- 0.06 (stat) +/- 0.03 (syst) and Scp = -0.64 +/- 0.08 (stat) +/- 0.03 (syst), where Acp and Scp represent the direct and mixing-induced CP asymmetry, respectively. Using an isospin analysis including results from other Belle measurements, we find 23.8 < phi2 < 66.8 degrees is disfavored at the 1 sigma level, where phi2 is one of the three interior angles of the CKM unitarity triangle related to B_{u,d} decays.
An analysis of B0->D K*0 decays is presented, where D represents an admixture of D0 and D0b mesons reconstructed in four separate final states: K-pi+, pi-K+, K+K- and pi+pi-. The data sample corresponds to 3.0fb-1 of proton-proton collision, collected by the LHCb experiment. Measurements of several observables are performed, including CP asymmetries. The most precise determination is presented of rB(DK*0), the magnitude of the ratio of the amplitudes of the decay B0->D K+ pi- with a b->u or a b->c transition, in a K pi mass region of +/-50 MeV/c2 around the K*(892) mass and for an absolute value of the cosine of the K*0 helicity angle larger than 0.4.
A measurement of the CP asymmetry in B0 -> K*0 mu+ mu- decays is presented, based on 1.0fb-1 of pp collision data recorded by the LHCb experiment during 2011. The measurement is performed in six bins of invariant mass squared of the mu+ mu- pair, excluding the J/psi and psi(2S) resonance regions. Production and detection asymmetries are removed using the B0 -> J/Psi K*0 decay as a control mode. The integrated CP asymmetry is found to be -0.072 +- 0.040 (stat.) +- 0.005 (syst.), consistent with the Standard Model.