No Arabic abstract
A new near detector, SciBar, for the K2K long-baseline neutrino oscillation expe riment was installed to improve the measurement of neutrino energy spectrum and to study neutrino interactions in the energy region around 1 GeV. SciBar is a fully active tracking detector with fine segmentation consisting of plastic scintillator bars. The detector was constructed in summer 2003 and is taking data since October 2003. The basic design and initial performance is presented.
A muon range detector (MRD) has been constructed as a near detector for the KEK-to-Kamioka long-baseline neutrino experiment (K2K). It monitors the neutrino beam properties at the near site by measuring the energy, angle and production point of muons produced by charged-current neutrino interaction. The detector has been working stably since the start of the K2K experiment.
This paper presents the results of oscillation analysis in K2K experiment. The results show indications of neutrino oscillation and give a new constraint on the oscillation parameters. The difference of neutrino masses squared $Delta m^2$ lies between 1.5 and 3.9$times10^{-3} {rm eV}^2$ at $sin^2 2theta=1$ with the confidence level of 90%. In addition to these results, a brief overview of future long-baseline neutrino experiment in Japan, JHF-$ u$ experiment, is also given in this paper.
The MiniBooNE neutrino detector was designed and built to look for muon-neutrino to electron-neutrino oscillations in the mixing parameter space region where the LSND experiment reported a signal. The MiniBooNE experiment used a beam energy and baseline that were an order of magnitude larger than those of LSND so that the backgrounds and systematic errors would be completely different. This paper provides a detailed description of the design, function, and performance of the MiniBooNE detector.
We report results of experiments performed with the KEDR detector at the VEPP-4M e+e- collider. They include precise measurement of the D0 and D+- meson masses, determination of the psi(3770) resonance parameters, and a search for narrow resonances in e+e- annihilation at center-of-mass energies between 1.85 and 3.1 GeV.
In this paper we discuss the recent finalized analyses by the KLOE experiment at DA$Phi$NE: the CPT and Lorentz invariance test with entangled $K^0 bar{K}^0$ pairs, and the precision measurement of the branching fraction of the decay ${ K^+} rightarrow pi^+pi^-pi^+(gamma)$. We also present the status of an ongoing analysis aiming to precisely measure the $K^{pm} $ mass.