No Arabic abstract
The review of the SND results of the $e^+e^-topi^+pi^-pi^0$ process study in the energy range $sqrt[]{s}=0.42$ -- 1.38 GeV at VEPP-2M collider, based on about $2times 10^6$ selected events, is presented. The total cross section, parameters of the $rho$, $omega$, $phi$ resonances, and $omega^prime$, $omega^{primeprime}$ states were obtained. It was found that $rhopi$ and $omegapi^0$ intermediate states describe the reaction dynamics. The experimental data cannot be described by a sum of only $omega$, $phi$, $omega^prime$ and $omega^{primeprime}$ resonances contributions. This can be interpreted as a manifestation of the $rhoto 3pi$ decay, suppressed by $G$-parity, with relative probability $B(rhoto 3pi) = (1.01pm^{0.54}_{0.36}pm 0.034) times 10^{-4}$.
In the experiment with the SND detector at VEPP-2M e^+e^- collider the process $e^+e^-topi^+pi^-pi^0$ was studied in the energy range 2E_0 from 1.04 to 1.38 GeV. A broad peak was observed with the visible mass $M_{vis}=1220pm 20$ MeV and cross section in the maximum $sigma_0simeq 4$ nb. The peak can be interpreted as a $omega$-like resonance $omega (1200)$.
The cross section of the process $e^+e^-to pi^+pi^-pi^0$ was measured in the Spherical Neutral Detector experiment at the VEPP-2M collider in the energy region $sqrt[]{s} = 980 div 1380$ MeV. The measured cross section, together with the $e^+e^-to pi^+pi^-pi^0$ and $omegapi^+pi^-$ cross sections obtained in other experiments, was analyzed in the framework of the generalized vector meson dominance model. It was found that the experimental data can be described by a sum of $omega$, $phi$ mesons and two $omega^prime$ and $omega^{primeprime}$ resonances contributions, with masses $m_{omega^prime}sim 1490$,$m_{omega^{primeprime}}sim 1790$ MeV and widths $Gamma_{omega^prime}sim 1210$, $Gamma_{omega^{primeprime}}sim 560$ MeV. The analysis of the $pi^+pi^-$ invariant mass spectra in the energy region $sqrt[]{s}$ from 1100 to 1380 MeV has shown that for their descriptionone should take into account the $e^+e^-toomegapi^0topi^+pi^-pi^0$ mechanism also. The phase between the amplitudes corresponding to the $e^+e^-toomegapi$ and $e^+e^-torhopi$ intermediate states was measured for the first time. The value of the phase is close to zero and depends on energy.
We present a measurement of the $e^+e^-to K_SK_L$ cross section in the energy range $sqrt{s}=1.04 div 1.38$ GeV. For the energy $sqrt{s}geq 1.2$ GeV the cross section exceeds vector meson dominance model predictions with only $rho(770)$, $omega(783)$, and $phi(1020)$ mesons taken into account. Measured cross section agrees well with previous measurements.
The process $e^+e^-toomegaetapi^0$ is studied in the energy range $1.45-2.00$ GeV using data with an integrated luminosity of 33 pb$^{-1}$ accumulated by the SND detector at the $e^+e^-$ collider VEPP-2000. The $e^+e^-toomegaetapi^0$ cross section is measured for the first time. The cross section has a threshold near 1.75 GeV. Its value is about 2 nb in the energy range $1.8-2.0$ GeV. The dominant intermediate state for the process $e^+e^- to omegaetapi^0$ is found to be $omega a_0(980)$.
The cross section of the process $e^+e^-to pi^+pi^-pi^0$ was measured in the Spherical Neutral Detector (SND) experiment at the VEPP-2M collider in the energy region $sqrt[]{s}$ below 980 MeV. This measurement was based on about $1.2 times 10^6$ selected events. The obtained cross section was analyzed together with the SND and DM2 data in the energy region $sqrt[]{s}$ up to 2 GeV. The $omega$-meson parameters: $m_omega=782.79pm 0.08pm 0.09$ MeV, $Gamma_omega=8.68pm 0.04pm 0.15$ MeV and $sigma(omegato 3pi)=1615pm 9pm 57$ nb were obtained. It was found that the experimental data cannot be described by a sum of only $omega$, $phi$, $omega^prime$ and $omega^{primeprime}$ resonances contributions. This can be interpreted as a manifestation of $rhoto 3pi$ decay, suppressed by $G$-parity, with relative probability $B(rhoto 3pi) = (1.01pm^{0.54}_{0.36}pm 0.034) times 10^{-4}$.