We report on a search for B0bar --> D0 K(*)0bar decays based on 85 10^6 BBar events collected with the Belle detector at KEKB. The B0bar --> D0 K0bar and B0bar --> D0 K*0bar decays have been observed for the first time with the branching fractions Br(B0bar --> D0 K0bar) = (5.0^{+1.3}_{-1.2}+- 0.6) 10^{-5} and Br(B0bar --> D0 K*0bar) = (4.8^{+1.1}_{-1.0}+- 0.5) 10^{-5}. No significant signal has been found for the B0bar --> D*0 K(*)0bar and B0bar --> D(*)0bar K*0bar decay modes, and upper limits at 90% CL are presented.
First observations of the Cabibbo suppressed decays B0bar -->D+ K- pi+ pi- and B- --> D0 K- pi+ pi- are reported using 35 pb^{-1} of data collected with the LHCb detector. Their branching fractions are measured with respect to the corresponding Cabibbo favored decays, from which we obtain B(B0bar --> D+ K- pi+ pi-)/B(B0bar --> D+ pi- pi+ pi-)=(5.9pm1.1pm0.5) x 10^{-2} and B(B- --> D0 K- pi+ pi-)/B(B- --> D0 pi- pi+ pi-)=(9.4pm1.3pm0.9) x 10^{-2}, where the uncertainties are statistical and systematic, respectively. The B- --> D0 K- pi+ pi- decay is particularly interesting, as it can be used in a similar way to B- --> D0 K- to measure the CKM phase gamma.
We report the observation of the baryonic B decay B0bar --> Lambda_c^+ anti-Lambda K- with a significance larger than 7 standard deviations based on 471x10^6$ BBbar pairs collected with the BABAR detector at the PEP-II storage ring at SLAC. We measure the branching fraction for the decay B0bar --> Lambda_c^+ anti-Lambda K- to be (3.8 pm 0.8_{stat} pm 0.2_{sys} pm 1.0_{Lambda_c^+})x10^{-5}. The uncertainties are statistical, systematic, and due to the uncertainty in the Lambda_c^+ branching fraction. We find that the Lambda_c^+ K^- invariant mass distribution shows an enhancement above 3.5 GeV/c^2.
Measurements of charm mixing parameters from the decay-time-dependent ratio of D0->K+pi- to D0->K-pi+ rates and the charge-conjugate ratio are reported. The analysis uses data, corresponding to 3 fb^{-1} of integrated luminosity, from proton-proton collisions at 7 and 8 TeV center-of-mass energies recorded by the LHCb experiment. In the limit of charge-parity (CP) symmetry, the mixing parameters are determined to be x^2=(5.5 +- 4.9)x10^{-5}, y= (4.8 +- 1.0)x10^{-3}, and R_D=(3.568 +- 0.066)x10^{-3}. Allowing for CP violation, the mixing parameters are determined separately for D0 and D0bar mesons yielding A_D = (-0.7 +- 1.9)%, for the direct CP-violating asymmetry, and 0.75 < |q/p|< 1.24 at the 68.3% confidence level, where q and p are parameters that describe the mass eigenstates of the neutral charm mesons in terms of the flavor eigenstates. This is the most precise determination of these parameters from a single experiment and shows no evidence for CP violation.
We report a measurement of the time-dependent ratio of D0->K+pi- to D0->K-pi+ decay rates in D*+-tagged events using 1.0 fb^{-1} of integrated luminosity recorded by the LHCb experiment. We measure the mixing parameters x2=(-0.9+-1.3)x10^{-4}, y=(7.2+-2.4)x10^{-3} and the ratio of doubly-Cabibbo-suppressed to Cabibbo-favored decay rates R_D=(3.52+-0.15)x10^{-3}, where the uncertainties include statistical and systematic sources. The result excludes the no-mixing hypothesis with a probability corresponding to 9.1 standard deviations and represents the first observation of D0-D0bar oscillations from a single measurement.
A search for CP violation in the phase-space structures of D0 and D0bar decays to the final states K-K+pi-pi+ and pi-pi+pi+pi- is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0fb^-1 collected in 2011 by the LHCb experiment in $pp$ collisions at a centre-of-mass energy of 7TeV. For the K-K+pi-pi+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the pi-pi+pi+pi- final state is partitioned into 128 bins, each bin with approximately 2500 decays. The $p$-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity.