Do you want to publish a course? Click here

Studies of the Response of the Prototype CMS Hadron Calorimeter, Including Magnetic Field Effects, to Pion, Electron, and Muon Beams

83   0   0.0 ( 0 )
 Added by Pawel de Barbaro
 Publication date 2000
  fields
and research's language is English




Ask ChatGPT about the research

We report on the response of a prototype CMS hadron calorimeter module to charged particle beams of pions, muons, and electrons with momenta up to 375 GeV/c. The data were taken at the H2 and H4 beamlines at CERN in 1995 and 1996. The prototype sampling calorimeter used copper absorber plates and scintillator tiles with wavelength shifting fibers for readout. The effects of a magnetic field of up to 3 Tesla on the response of the calorimeter to muons, electrons, and pions are presented, and the effects of an upstream lead tungstate crystal electromagnetic calorimeter on the linearity and energy resolution of the combined calorimetric system to hadrons are evaluated. The results are compared with Monte Carlo simulations and are used to optimize the choice of total absorber depth, sampling frequency, and longitudinal readout segmentation.

rate research

Read More

77 - Arie Bodek 1998
We report on the performance of a prototype CMS Hadron Barrel Calorimeter (HCAL) module in a test beam. The prototype sampling calorimeter used copper absorber plates and scintillator tiles with wavelength shifting fibers for readout. Placing a lead tungstate crystal electromagnetic calorimeter in front of HCAL affects the linearity and energy resolution of the combined system to hadrons. The data are used to optimize the choice of total absorber depth, sampling frequency, and longitudinal readout segmentation.
337 - Y.A. Kulchitsky , et. al 1999
The detailed information about electron response, electron energy resolution and e/h ratio as a function of incident energy E, impact point Z and incidence angle $Theta$ of iron-scintillator hadron prototype calorimeter with longitudinal tile configuration is presented. These results are based on electron and pion beams data of E = 20, 50, 100, 150, 300 GeV at $Theta = 10^o, 20^o, 30^o$, which were obtained during test beam period in July 1995. The obtained calibration constant is used for muon response converting from pC to GeV. The results are compared with existing experimental data and with some Monte Carlo calculations.
Building on the rare pion and muon decay results of the PIBETA experiment, the PEN collaboration has undertaken a precise measurement of B_{pi e2} = R^pi_{e/mu}, the pi^+ -> e^+ u(gamma) decay branching ratio, at the Paul Scherrer Institute, to reduce the present 40times experimental precision lag behind theory to ~ 6-7times. Because of large helicity suppression, R^pi_{e/mu} is uniquely sensitive to contributions from non-(V-A) physics, making this decay a particularly suitable subject of study. Even at current precision, the experimental value of B_{pi e2} provides the most accurate test of lepton universality available. During runs in 2008-10, PEN has accumulated over 2times 10^7 pi_{e2} events; a comprehensive maximum-likelihood analysis is currently under way. The new data will also lead to improved precision of the earlier PIBETA results on radiative pi and mu decays.
60 - Y. A. Kulchitsky , et. al 1999
The hadronic shower longitudinal and lateral leakages and its effect on the pion response and energy resolution of iron-scintillator barrel hadron prototype calorimeter with longitudinal tile configuration with a thickness of 9.4 nuclear interaction lengths have been investigated. The results are based on 100 GeV pion beam data at incidence angle $Theta = 10^o$ at impact point Z in the range from - 36 to 20 cm which were obtained during test beam period in May 1995 with setup equipped scintillator detector planes placed behind and back of the calorimeter. The fraction of the energy of 100 GeV pions at $Theta = 10^o$ leaking out at the back of this calorimeter amounts to 1.8 % and agrees with the one for a conventional iron-scintillator calorimeter. Unexpected behaviour of the energy resolution as a function of leakage is observed: 6 % lateral leakage lead to 18 % improving of energy resolution in compare with the showers without leakage. The measured values of longitudinal punchthrough probability $(18 pm 1) %$ and $(20 pm 1) %$ for two different hit definitions of leaking events agree with the earlier measurement for our calorimeter and with the one for a conventional iron-scintillator calorimeter with the same nuclear interaction length thickness respectively. Due to more soft cut for hit definition in the leakage detectors the measured value of longitudinal punchthrough probability more corresponds to the calculated iron equivalent length $L_{Fe} = 158 cm$.
The prototype of the hadron calorimeter module consisting of 66 scintillator/lead layers with the 15x15 cm^2 cross section and 5 nuclear interaction lengths has been designed and produced for the zero degree calorimeter of the BM@N experiment. The prototype has been tested with high energy muon beam of the U-70 accelerator at IHEP. The results of the beam test for different types of photo multipliers and light guides are presented. The results of the Monte-Carlo simulation of the calorimeter response and energy resolution are presented for the 2-16 GeV protons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا