Non-Singular Cosmological Models in String Gravity with Second Order Curvature Corrections


Abstract in English

We investigate FRW cosmological solutions in the theory of modulus field coupled to gravity through a Gauss-Bonnet term. The explicit analytical forms of nonsingular asymptotics are presented for power-law and exponentially steep modulus coupling functions. We study the influence of modulus field potential on these asymptotical regimes and find some forms of the potential which do not destroy the nonsingular behavior. In particular, we obtain that exponentially steep coupling functions arising from the string theory do not allow nonsingular past asymptotic unless modulus field potential tends to zero for modulus field $psi to pm infty$. Finally, the modification of the chaotic dynamics in the closed FRW universe due to presence of the Gauss-Bonnet term is discussed.

Download