No Arabic abstract
We reconsider here the model where large quantum gravity effects were first found, but now in its Null Surface Formulation (NSF). We find that although the set of coherent states for $Z$, the basic variable of NSF, is as restricted as it is the one for the metric, while some type of small deviations from these states may cause huge fluctuations on the metric, the corresponding fluctuations on $Z$ remain small.
In the present work we investigate the Newtonian limit of higher-derivative gravity theories with more than four derivatives in the action, including the non-analytic logarithmic terms resulting from one-loop quantum corrections. The first part of the paper deals with the occurrence of curvature singularities of the metric in the classical models. It is shown that in the case of local theories, even though the curvature scalars of the metric are regular, invariants involving derivatives of curvatures can still diverge. Indeed, we prove that if the action contains $2n+6$ derivatives of the metric in both the scalar and the spin-2 sectors, then all the curvature-derivative invariants with at most $2n$ covariant derivatives of the curvatures are regular, while there exist scalars with $2n+2$ derivatives that are singular. The regularity of all these invariants can be achieved in some classes of nonlocal gravity theories. In the second part of the paper, we show that the leading logarithmic quantum corrections do not change the regularity of the Newtonian limit. Finally, we also consider the infrared limit of these solutions and verify the universality of the leading quantum correction to the potential in all the theories investigated in the paper.
Varying the gravitational Lagrangian produces a boundary contribution that has various physical applications. It determines the right boundary terms to be added to the action once boundary conditions are specified, and defines the symplectic structure of covariant phase space methods. We study general boundary variations using tetrads instead of the metric. This choice streamlines many calculations, especially in the case of null hypersurfaces with arbitrary coordinates, where we show that the spin-1 momentum coincides with the rotational 1-form of isolated horizons. The additional gauge symmetry of internal Lorentz transformations leaves however an imprint: the boundary variation differs from the metric one by an exact 3-form. On the one hand, this difference helps in the variational principle: gluing hypersurfaces to determine the action boundary terms for given boundary conditions is simpler, including the most general case of non-orthogonal corners. On the other hand, it affects the construction of Hamiltonian surface charges with covariant phase space methods, which end up being generically different from the metric ones, in both first and second-order formalisms. This situation is treated in the literature gauge-fixing the tetrad to be adapted to the hypersurface or introducing a fine-tuned internal Lorentz transformation depending non-linearly on the fields. We point out and explore the alternative approach of dressing the bare symplectic potential to recover the value of all metric charges, and not just for isometries. Surface charges can also be constructed using a cohomological prescription: in this case we find that the exact 3-form mismatch plays no role, and tetrad and metric charges are equal. This prescription leads however to different charges whether one uses a first-order or second-order Lagrangian, and only for isometries one recovers the same charges.
We consider the question of whether consistency arguments based on measurement theory show that the gravitational field must be quantized. Motivated by the argument of Eppley and Hannah, we apply a DeWitt-type measurement analysis to a coupled system that consists of a gravitational wave interacting with a mass cube. We also review the arguments of Eppley and Hannah and of DeWitt, and investigate a second model in which a gravitational wave interacts with a quantized scalar field. We argue that one cannot conclude from the existing gedanken experiments that gravity has to be quantized. Despite the many physical arguments which speak in favor of a quantum theory of gravity, it appears that the justification for such a theory must be based on empirical tests and does not follow from logical arguments alone.
We show that if one starts with a Universe with some matter and a cosmological constant, then quantum mechanics naturally induces an attractive gravitational potential and an effective Newtons coupling. Thus gravity is an emergent phenomenon and what should be quantized are the fundamental degrees of freedom from which it emerges.
Einsteins general relativity can emerge from pregeometry, with the metric composed of more fundamental fields. We formulate euclidean pregeometry as a $SO(4)$ - Yang-Mills theory. In addition to the gauge fields we include a vector field in the vector representation of the gauge group. The gauge - and diffeomorphism - invariant kinetic terms for these fields permit a well-defined euclidean functional integral, in contrast to metric gravity with the Einstein-Hilbert action. The propagators of all fields are well behaved at short distances, without tachyonic or ghost modes. The long distance behavior is governed by the composite metric and corresponds to general relativity. In particular, the graviton propagator is free of ghost or tachyonic poles despite the presence of higher order terms in a momentum expansion of the inverse propagator. This pregeometry seems to be a valid candidate for euclidean quantum gravity, without obstructions for analytic continuation to a Minkowski signature of the metric.