It is shown that growing-entropy stiff-fluid Kantowski-Sachs universes become time-symmetric (if they start with time-asymmetric phase) and isotropize. Isotropization happens without any inflationary era during the evolution since there is no cosmological term here. It seems that this approach is an alternative to inflation since the universe gets bigger and bigger approaching flatness.
The Kantowski-Sachs cosmological model sourced by a Skyrme field and a cosmological constant is considered in the framework of General Relativity. Assuming a constant radial profile function for the hedgehog ansatz, the Skyrme contribution to Einstein equations is shown to be equivalent to an anisotropic fluid. Using dynamical system techniques, a qualitative analysis of the cosmological equations is presented. Physically interesting features of the model such as isotropization, bounce and recollapse are discussed.
We investigate Kantowski-Sachs models in Einstein-{ae}ther theory with a perfect fluid source using the singularity analysis to prove the integrability of the field equations and dynamical system tools to study the evolution. We find an inflationary source at early times, and an inflationary sink at late times, for a wide region in the parameter space. The results by A. A. Coley, G. Leon, P. Sandin and J. Latta (JCAP 12, 010, 2015), are then re-obtained as particular cases. Additionally, we select other values for the non-GR parameters which are consistent with current constraints, getting a very rich phenomenology. In particular, we find solutions with infinite shear, zero curvature, and infinite matter energy density in comparison with the Hubble scalar. We also have stiff-like future attractors, anisotropic late-time attractors, or both, in some special cases. Such results are developed analytically, and then verified by numerics. Finally, the physical interpretation of the new critical points is discussed.
A class of positive curvature spatially homogeneous but anisotropic cosmological models within an Einstein-aether gravitational framework are investigated. The matter source is assumed to be a scalar field which is coupled to the expansion of the aether field through a generalized exponential potential. The evolution equations are expressed in terms of expansion-normalized variables to produce an autonomous system of ordinary differential equations suitable for a numerical and qualitative analysis. An analysis of the local stability of the equilibrium points indicates that there exists a range of values of the parameters in which there exists an accelerating expansionary future attractor. In general relativity, scalar field models with an exponential potential $V=V_0e^{-2kphi}$ have a late-time inflationary attractor for $k^2<frac{1}{2}$; however, it is found that the existence of the coupling between the aether and scalar fields allows for arbitrarily large values of the parameter $k$.
Utilizing the autonomous system of ordinary differential equations derived in arXiv:1809.01458 to define the evolution, we further investigate a class of cosmological models within an Einstein-aether gravitational framework by introducing a non-trivial coupling between the shear of the aether field to the scalar field on the future asymptotic solution. We subsequently conduct qualitative and numerical stability analysis on the new set of equilibrium points and paramountly determine that the expansionary power-law inflationary attractor becomes anisotropic rather than isotropic in the presence of such a coupling. It is further shown that the stability of this solution is dependent on the value of the shear coupling parameter $a3$. We also discover a family of asymptotically stable periodic orbits which exist for a particular range of parameter values within the Bianchi I invariant set and vanish in the absence of coupling between the aether field and the scalar field.
The paper deals with a non--minimally coupled scalar field in the background of homogeneous but anisotropic Kantowski--Sachs space--time model. The form of the coupling function of the scalar field with gravity and the potential function of the scalar field are not assumed phenomenologically, rather they are evaluated by imposing Noether symmetry to the Lagrangian of the present physical system. The physical system gets considerable mathematical simplification by a suitable transformation of the augmented variables $(a, b, phi)rightarrow (u, v, w)$ and by the use of the conserved quantities due to the geometrical symmetry. Finally, cosmological solutions are evaluated and analyzed from the point of view of the present evolution of the Universe.