For irrotational dust the shear tensor is consistently diagonalizable with its covariant time derivative: $sigma_{ab}=0=dot{sigma}_{ab},; a eq b$, if and only if the divergence of the magnetic part of the Weyl tensor vanishes: $div~H = 0$. We show here that in that case, the consistency of the Ricci constraints requires that the magnetic part of the Weyl tensor itself vanishes: $H_{ab}=0$.