Do you want to publish a course? Click here

Causality and the speed of sound

58   0   0.0 ( 0 )
 Added by Roy Maartens
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

A usual causal requirement on a viable theory of matter is that the speed of sound be at most the speed of light. In view of various recent papers querying this limit, the question is revisited here. We point to various issues confronting theories that violate the usual constraint.



rate research

Read More

77 - Lei-Hua Liu , Ai-Chen Li 2021
In this paper, we study the impact of non-trivial sound on the evolution of cosmological complexity in inflationary period. The vacuum state of curvature perturbation could be treated as squeezed states with two modes, characterized by the two most essential parameters: angle parameter $phi_k$ and squeezing parameter $r_k$. Through $Schrddot{o}dinger$ equation, one can obtain the corresponding evolution equation of $phi_k$ and $r_k$. Subsequently, the quantum circuit complexity between a squeezed vacuum state and squeezed states are evaluated in scalar curvature perturbation with a type of non-trivial sound speed. Our results reveal that the evolution of complexity at early times shows the rapid solution comparing with $c_S=1$, in which we implement the resonant sound speed with various values of $xi$. In these cases, it shows that the scrambling time will be lagged with non-vanishing $xi$. Further, our methodology sheds a new way of distinguishing various inflationary models.
There have been thousands of cosmological models for our early universe proposed in the literature, and many of them claimed to be able to give rise to scale-invariant power spectrum as was favored by the observational data. It is thus interesting to think about whether there are some relations among them, e.g., the duality relation. In this paper, we investigate duality relations between cosmological models in framework of general relativity (GR) , not only with varying slow-roll parameter $epsilon$, but also with sound speed $c_s$, which can then be understood as adiabatic duality. Several duality relationships are formulated analytically and verified numerically. We show that models with varying $epsilon$ and constant $c_s$ can be dual in scalar spectral index, but not tensor one. On the other hand, allowing both $epsilon$ and $c_s$ to vary can make models dual in both scalar and tensor spectral indices.
We study inflation with the Dirac-Born-Infeld (DBI) noncanonical scalar field in both the cold and warm scenarios. We consider the Anti-de Sitter warp factor $f(phi)=f_{0}/phi^{4}$ for the DBI inflation and check viability of the quartic potential $V(phi)=lambdaphi^{4}/4$ in light of the Planck 2015 observational results. In the cold DBI setting, we find that the prediction of this potential in the $r-n_s$ plane is in conflict with Planck 2015 TT,TE,EE+lowP data. This motivates us to focus on the warm DBI inflation with constant sound speed. We conclude that in contrary to the case of cold scenario, the $r-n_s$ result of warm DBI model can be compatible with the 68% CL constraints of Planck 2015 TT,TE,EE+lowP data in the intermediate and high dissipation regimes, whereas it fails to be observationally viable in the weak dissipation regime. Also, the prediction of this model for the running of the scalar spectral index $dn_s/dln k$ is in good agreement with the constraint of Planck 2015 TT,TE,EE+lowP data. Finally, we show that the warm DBI inflation can provide a reasonable solution to the swampland conjecture that challenges the de Sitter limit in the standard inflation.
161 - G. Otalora , M.J. Reboucas 2017
[Abridged] In its standard formulation, the $f(T)$ field equations are not invariant under local Lorentz transformations, and thus the theory does not inherit the causal structure of special relativity. A locally Lorentz covariant $f(T)$ gravity theory has been devised recently, and this local causality problem has been overcome. The nonlocal question, however, is left open. If gravitation is to be described by this covariant $f(T)$ gravity theory there are a number of issues that ought to be examined in its context, including the question as to whether its field equations allow homogeneous Godel-type solutions, which necessarily leads to violation of causality on nonlocal scale. Here, to look into the potentialities and difficulties of the covariant $f(T)$ theories, we examine whether they admit Godel-type solutions. We take a combination of a perfect fluid with electromagnetic plus a scalar field as source, and determine a general Godel-type solution, which contains special solutions in which the essential parameter of Godel-type geometries, $m^2$, defines any class of homogeneous Godel-type geometries. We extended to the context of covariant $f(T)$ gravity a theorem, which ensures that any perfect-fluid homogeneous Godel-type solution defines the same set of Godel tetrads $h_A^{~mu}$ up to a Lorentz transformation. We also shown that the single massless scalar field generates Godel-type solution with no closed timelike curves. Even though the covariant $f(T)$ gravity restores Lorentz covariance of the field equations and the local validity of the causality principle, the bare existence of the Godel-type solutions makes apparent that the covariant formulation of $f(T)$ gravity does not preclude non-local violation of causality in the form of closed timelike curves.
192 - Dario Bettoni 2016
The direct detection of gravitational waves (GWs) is an invaluable new tool to probe gravity and the nature of cosmic acceleration. A large class of scalar-tensor theories predict that GWs propagate with velocity different than the speed of light, a difference that can be $mathcal{O}(1)$ for many models of dark energy. We determine the conditions behind the anomalous GW speed, namely that the scalar field spontaneously breaks Lorentz invariance and couples to the metric perturbations via the Weyl tensor. If these conditions are realized in nature, the delay between GW and electromagnetic (EM) signals from distant events will run beyond human timescales, making it impossible to measure the speed of GWs using neutron star mergers or other violent events. We present a robust strategy to exclude or confirm an anomalous speed of GWs using eclipsing binary systems, whose EM phase can be exquisitely determined. he white dwarf binary J0651+2844 is a known example of such system that can be used to probe deviations in the GW speed as small as $c_g/c-1gtrsim 2cdot 10^{-12}$ when LISA comes online. This test will either eliminate many contender models for cosmic acceleration or wreck a fundamental pillar of general relativity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا