Do you want to publish a course? Click here

The quintessence scalar field in the relativistic theory of gravity

105   0   0.0 ( 0 )
 Added by Konstantin Modestov
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The variant of the quintessence theory is proposed in order to get an accelerated expansion of the Friedmannian Universe in the frameworks of relativistic theory of gravitation. The substance of quintessence is built up the scalar field of dark energy. It is shown, that function V(Phi), which factorising scalar field Lagrangian (Phi is a scalar field) has no influence on the evolution of the Universe. Some relations, allowing to find explicit dependence Phi on time, were found, provided given function V(Phi).



rate research

Read More

92 - Molin Liu , Benhai Yu , Fei Yu 2010
After the previous work on gravitational frequency shift, light deflection (arXiv:1003.5296) and perihelion advance (arXiv:0812.2332), we calculate carefully the fourth gravity test, i.e. radar echo delay in a central gravity field surrounded by static free quintessence matter, in this paper. Through the Lagrangian method, we find the influence of the quintessence matter on the time delay of null particle is presence by means of an additional integral term. When the quintessence field vanishes, it reduces to the usual Schwarzschild case naturally. Meanwhile, we also use the data of the Viking lander from the Mars and Cassini spacecraft to Saturn to constrain the quintessence field. For the Viking case, the field parameter $alpha$ is under the order of $10^{-9}$. However, $alpha$ is under $10^{-18}$ for the Cassini case.
We consider the Wheeler-De Witt equation for canonical quantum gravity coupled to massless scalar field. After regularizing and renormalizing this equation, we find a one-parameter class of its solutions.
In this paper, we study the properties of gravitational waves in the scalar-tensor-vector gravity theory. The polarizations of the gravitational waves are investigated by analyzing the relative motion of the test particles. It is found that the interaction between the matter and vector field in the theory leads to two additional transverse polarization modes. By making use of the polarization content, the stress-energy pseudo-tensor is calculated by employing the perturbed equation method. Besides, the relaxed field equation for the modified gravity in question is derived by using the Landau-Lifshitz formalism suitable to systems with non-negligible self-gravity.
The scalar-tensor theory can be formulated in both Jordan and Einstein frames, which are conformally related together with a redefinition of the scalar field. As the solution to the equation of the scalar field in the Jordan frame does not have the one-to-one correspondence with that in the Einstein frame, we give a criterion along with some specific models to check if the scalar field in the Einstein frame is viable or not by confirming whether this field is reversible back to the Jordan frame. We further show that the criterion in the first parameterized post-Newtonian approximation can be determined by the parameters of the osculating approximation of the coupling function in the Einstein frame and can be treated as a viable constraint on any numerical study in the scalar-tensor scenario. We also demonstrate that the Brans-Dicke theory with an infinite constant parameter $omega_{text{BD}}$ is a counterexample of the equivalence between two conformal frames due to the violation of the viable constraint.
We investigate the running vacuum model (RVM) in the framework of scalar field theory.This dynamical vacuum model provides an elegant global explanation of the cosmic history, namely the universe starts from a non-singular initial de Sitter vacuum stage, it passes smoothly from an early inflationary era to a radiation epoch (graceful exit) and finally it enters the dark matter and dark energy (DE) dominated epochs, where it can explain the large entropy problem and predicts a mild dynamical evolution of the DE. Within this phenomenologically appealing context, we formulate an effective {it classical} scalar field description of the RVM through a field $phi$, called the {it vacuumon}, which turns out to be very helpful for an understanding and practical implementation of the physical mechanisms of the running vacuum during both the early universe and the late time cosmic acceleration. In the early universe the potential for the vacuumon may be mapped to a potential that behaves similarly to that of the scalaron field of Starobinsky-type inflation at the {it classical} level, whilst in the late universe it provides an effective scalar field description of DE. The two representations, however, are not physically equivalent since the mechanisms of inflation are entirely different. Moreover, unlike the scalaron, vacuumon is treated as a classical background field, and not a fully fledged quantum field, hence cosmological perturbations will be different between the two pictures of inflation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا