Evolving wormhole geometries within nonlinear electrodynamics


Abstract in English

In this work, we explore the possibility of evolving (2+1) and (3+1)-dimensional wormhole spacetimes, conformally related to the respective static geometries, within the context of nonlinear electrodynamics. For the (3+1)-dimensional spacetime, it is found that the Einstein field equation imposes a contracting wormhole solution and the obedience of the weak energy condition. Nevertheless, in the presence of an electric field, the latter presents a singularity at the throat, however, for a pure magnetic field the solution is regular. For the (2+1)-dimensional case, it is also found that the physical fields are singular at the throat. Thus, taking into account the principle of finiteness, which states that a satisfactory theory should avoid physical quantities becoming infinite, one may rule out evolving (3+1)-dimensional wormhole solutions, in the presence of an electric field, and the (2+1)-dimensional case coupled to nonlinear electrodynamics.

Download