No Arabic abstract
In this work, we explore the possibility of evolving (2+1) and (3+1)-dimensional wormhole spacetimes, conformally related to the respective static geometries, within the context of nonlinear electrodynamics. For the (3+1)-dimensional spacetime, it is found that the Einstein field equation imposes a contracting wormhole solution and the obedience of the weak energy condition. Nevertheless, in the presence of an electric field, the latter presents a singularity at the throat, however, for a pure magnetic field the solution is regular. For the (2+1)-dimensional case, it is also found that the physical fields are singular at the throat. Thus, taking into account the principle of finiteness, which states that a satisfactory theory should avoid physical quantities becoming infinite, one may rule out evolving (3+1)-dimensional wormhole solutions, in the presence of an electric field, and the (2+1)-dimensional case coupled to nonlinear electrodynamics.
In this paper we review some properties for the evolving wormhole solution of Einstein equations coupled with nonlinear electrodynamics. We integrate the geodesic equations in the effective geometry obeyed by photons; we check out the weak field limit and find the traversability conditions. Then we analyze the case when the lagrangian depends on two electromagnetic invariants and it turns out that there is not a more general solution within the assumed geometry.
We explore the possibility of dynamic wormhole geometries, within the context of nonlinear electrodynamics. The Einstein field equation imposes a contracting wormhole solution and the obedience of the weak energy condition. Furthermore, in the presence of an electric field, the latter presents a singularity at the throat, however, for a pure magnetic field the solution is regular. Thus, taking into account the principle of finiteness, that a satisfactory theory should avoid physical quantities becoming infinite, one may rule out evolving wormhole solutions, in the presence of an electric field, coupled to nonlinear electrodynamics.
The measurement of the epicyclic frequencies is a widely used astrophysical technique to infer information on a given self-gravitating system and on the related gravity background. We derive their explicit expressions in static and spherically symmetric wormhole spacetimes. We discuss how these theoretical results can be applied to: (1) detect the presence of a wormhole, distinguishing it by a black hole; (2) reconstruct wormhole solutions through the fit of the observational data, once we have them. Finally, we discuss the physical implications of our proposed epicyclic method.
In this work we explore the possible existence of static, spherically symmetric and stationary, axisymmetric traversable wormholes coupled to nonlinear electrodynamics. Considering static and spherically symmetric (2+1) and (3+1)-dimensional wormhole spacetimes, we verify the presence of an event horizon and the non-violation of the null energy condition at the throat. For the former spacetime, the principle of finiteness is imposed, in order to obtain regular physical fields at the throat. Next, we analyze the (2+1)-dimensional stationary and axisymmetric wormhole, and also verify the presence of an event horizon, rendering the geometry non-traversable. Relatively to the (3+1)-dimensional stationary and axisymmetric wormhole geometry, we find that the field equations impose specific conditions that are incompatible with the properties of wormholes. Thus, we prove the non-existence of the general class of traversable wormhole solutions, outlined above, within the context of nonlinear electrodynamics.
The current interests in the universe motivate us to go beyond Einsteins General theory of relativity. One of the interesting proposals comes from a new class of teleparallel gravity named symmetric teleparallel gravity, i.e., $f(Q)$ gravity, where the non-metricity term $Q$ is accountable for fundamental interaction. These alternative modified theories of gravitys vital role are to deal with the recent interests and to present a realistic cosmological model. This manuscripts main objective is to study the traversable wormhole geometries in $f(Q)$ gravity. We construct the wormhole geometries for three cases: (i) by assuming a relation between the radial and lateral pressure, (ii) considering phantom energy equation of state (EoS), and (iii) for a specific shape function in the fundamental interaction of gravity (i.e. for linear form of $f(Q)$). Besides, we discuss two wormhole geometries for a general case of $f(Q)$ with two specific shape functions. Then, we discuss the viability of shape functions and the stability analysis of the wormhole solutions for each case. We have found that the null energy condition (NEC) violates each wormhole model which concluded that our outcomes are realistic and stable. Finally, we discuss the embedding diagrams and volume integral quantifier to have a complete view of wormhole geometries.