Do you want to publish a course? Click here

Cosmological Solutions in Macroscopic Gravity

63   0   0.0 ( 0 )
 Added by Alan Coley
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the macroscopic gravity approach to the averaging problem in cosmology, the Einstein field equations on cosmological scales are modified by appropriate gravitational correlation terms. We present exact cosmological solutions to the equations of macroscopic gravity for a spatially homogeneous and isotropic macroscopic space-time and find that the correlation tensor is of the form of a spatial curvature term. We briefly discuss the physical consequences of these results.



rate research

Read More

We investigate perturbations of a class of spherically symmetric solutions in massive gravity and bi-gravity. The background equations of motion for the particular class of solutions we are interested in reduce to a set of the Einstein equations with a cosmological constant. Thus, the solutions in this class include all the spherically symmetric solutions in general relativity, such as the Friedmann-Lema^{i}tre-Robertson-Walker solution and the Schwarzschild (-de Sitter) solution, though the one-parameter family of two parameters of the theory admits such a class of solutions. We find that the equations of motion for the perturbations of this class of solutions also reduce to the perturbed Einstein equations at first and second order. Therefore, the stability of the solutions coincides with that of the corresponding solutions in general relativity. In particular, these solutions do not suffer from non-linear instabilities which often appear in the other cosmological solutions in massive gravity and bi-gravity.
Unimodular gravity is an appealing approach to address the cosmological constant problem. In this scenario, the vacuum energy density of quantum fields does not gravitate and the cosmological constant appears merely as an integration constant. Recently, it has been shown that energy diffusion that may arise in quantum gravity and in theories with spontaneous collapse is compatible with this framework by virtue of its restricted diffeomorphism invariance. New studies suggest that this phenomenon could lead to higher-order equations in the context of homogeneous and isotropic Universe, affecting the well-posedness of their Cauchy initial-value problem. In this work, we show that this issue can be circumvented by assuming an equation of state that relates the energy density to the function that characterizes the diffusion. As an application, we solve the field equations analytically for an isotropic and homogeneous Universes in a barotropic model and in the mass-proportional continuous spontaneous localization (CSL) scenario, assuming that only dark matter develops energy diffusion. Different solutions possessing phase transition from decelerated to accelerated expansion are found. We use cosmological data of type Ia Supernovae and observational Hubble data to constrain the free parameters of both models. It is found that very small but nontrivial energy nonconservation is compatible with the barotropic model. However, for the CSL model, we find that the best-fit values are not compatible with previous laboratory experiments. We comment on this fact and propose future directions to explore energy diffusion in cosmology.
Modified gravity is one of the most promising candidates for explaining the current accelerating expansion of the Universe, and even its unification with the inflationary epoch. Nevertheless, the wide range of models capable to explain the phenomena of dark energy, imposes that current research focuses on a more precise study of the possible effects of modified gravity may have on both cosmological and local levels. In this paper, we focus on the analysis of a type of modified gravity, the so-called f(R,G) gravity and we perform a deep analysis on the stability of important cosmological solutions. This not only can help to constrain the form of the gravitational action, but also facilitate a better understanding of the behavior of the perturbations in this class of higher order theories of gravity, which will lead to a more precise analysis of the full spectrum of cosmological perturbations in future.
A formalism for analyzing the complete set of field equations describing Macroscopic Gravity is presented. Using this formalism, a cosmological solution to the Macroscopic Gravity equations is determined. It is found that if a particular segment of the connection correlation tensor is zero and if the macroscopic geometry is described by a flat Robertson-Walker metric, then the effective correction to the averaged Einstein Field equations of General Relativity i.e., the backreaction, is equivalent to a positive spatial curvature term. This investigation completes the analysis of [Phys. Rev. Lett., vol. 95, 151102, (2005)] and the formalism developed provides a possible basis for future studies.
Along this review, we focus on the study of several properties of modified gravity theories, in particular on black-hole solutions and its comparison with those solutions in General Relativity, and on Friedmann-Lemaitre-Robertson-Walker metrics. The thermodynamical properties of fourth order gravity theories are also a subject of this investigation with special attention on local and global stability of paradigmatic f(R) models. In addition, we revise some attempts to extend the Cardy-Verlinde formula, including modified gravity, where a relation between entropy bounds is obtained. Moreover, a deep study on cosmological singularities, which appear as a real possibility for some kind of modified gravity theories, is performed, and the validity of the entropy bounds is studied.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا