No Arabic abstract
This paper reports on our effort in modeling realistic astrophysical neutron star binaries in general relativity. We analyze under what conditions the conformally flat quasiequilibrium (CFQE) approach can generate ``astrophysically relevant initial data, by developing an analysis that determines the violation of the CFQE approximation in the evolution of the binary described by the full Einstein theory. We show that the CFQE assumptions significantly violate the Einstein field equations for corotating neutron stars at orbital separations nearly double that of the innermost stable circular orbit (ISCO) separation, thus calling into question the astrophysical relevance of the ISCO determined in the CFQE approach. With the need to start numerical simulations at large orbital separation in mind, we push for stable and long term integrations of the full Einstein equations for the binary neutron star system. We demonstrate the stability of our numerical treatment and analyze the stringent requirements on resolution and size of the computational domain for an accurate simulation of the system.
An approach to general relativity based on conformal flatness and quasiequilibrium (CFQE) assumptions has played an important role in the study of the inspiral dynamics and in providing initial data for fully general relativistic numerical simulations of coalescing compact binaries. However, the regime of validity of the approach has never been established. To this end, we develop an analysis that determines the violation of the CFQE approximation in the evolution of the binary described by the full Einstein theory. With this analysis, we show that the CFQE assumption is significantly violated even at relatively large orbital separations in the case of corotational neutron star binaries. We also demonstrate that the innermost stable circular orbit (ISCO) determined in the CFQE approach for corotating neutron star binaries may have no astrophysical significance.
We present results about the effect of the use of a stiffer equation of state, namely the ideal-fluid $Gamma=2.75$ ones, on the dynamical bar-mode instability in rapidly rotating polytropic models of neutron stars in full General Relativity. We determine the change on the critical value of the instability parameter $beta$ for the emergence of the instability when the adiabatic index $Gamma$ is changed from 2 to 2.75 in order to mimic the behavior of a realistic equation of state. In particular, we show that the threshold for the onset of the bar-mode instability is reduced by this change in the stiffness and give a precise quantification of the change in value of the critical parameter $beta_c$. We also extend the analysis to lower values of $beta$ and show that low-beta shear instabilities are present also in the case of matter described by a simple polytropic equation of state.
Maximally dissipative boundary conditions are applied to the initial-boundary value problem for Einsteins equations in harmonic coordinates to show that it is well-posed for homogeneous boundary data and for boundary data that is small in a linearized sense. The method is implemented as a nonlinear evolution code which satisfies convergence tests in the nonlinear regime and is robustly stable in the weak field regime. A linearized version has been stably matched to a characteristic code to compute the gravitational waveform radiated to infinity.
We investigate the dynamic stability of inspiraling neutron stars by performing multiple-orbit numerical relativity simulations of the binary neutron star inspiral process. By introducing eccentricities in the orbits of the neutron stars, significant changes in orbital separation are obtained within orbital timescales. We find that as the binary system evolves from apastron to periastron (as the binary separation decreases), the central rest mass density of each star decreases, thus stabilizing the stars against individual prompt collapse. As the binary system evolves from periastron to apastron, the central rest mass density increases; the neutron stars re-compress as the binary separation increases.
A shortcoming of current binary black-hole initial data is the generation of spurious gravitational radiation, so-called junk radiation, when they are evolved. This problem is a consequence of an oversimplified modeling of the binarys physics in the initial data. Since junk radiation is not astrophysically realistic, it contaminates the actual waveforms of interest and poses a numerical nuisance. The work here presents a further step towards mitigating and understanding the origin of this issue, by incorporating post-Newtonian results in the construction of constraint-satisfying binary black-hole initial data. Here we focus on including realistic tidal deformations of the black holes in the initial data, by building on the method of superposing suitably chosen black hole metrics to compute the conformal data. We describe the details of our initial data for an equal-mass and nonspinning binary, compute the subsequent relaxation of horizon quantities in evolutions, and quantify the amount of junk radiation that is generated. These results are contrasted with those obtained with the most common choice of conformally flat (CF) initial data, as well as superposed Kerr-Schild (SKS) initial data. We find that when realistic tidal deformations are included, the early transients in the horizon geometries are significantly reduced, along with smaller deviations in the relaxed black hole masses and spins from their starting values. Likewise, the junk radiation content in the $l=2$ modes is reduced by a factor of $sim$1.7 relative to CF initial data, but only by a factor of $sim$1.2 relative to SKS initial data. More prominently, the junk radiation content in the $3leq lleq8$ modes is reduced by a factor of $sim$5 relative to CF initial data, and by a factor of $sim$2.4 relative to SKS initial data.