Do you want to publish a course? Click here

Generalizations of pp-wave spacetimes in higher dimensions

72   0   0.0 ( 0 )
 Added by Nicos Pelavas
 Publication date 2002
  fields Physics
and research's language is English
 Authors A. Coley




Ask ChatGPT about the research

We shall investigate $D$-dimensional Lorentzian spacetimes in which all of the scalar invariants constructed from the Riemann tensor and its covariant derivatives are zero. These spacetimes are higher-dimensional generalizations of $D$-dimensional pp-wave spacetimes, which have been of interest recently in the context of string theory in curved backgrounds in higher dimensions.



rate research

Read More

85 - A. Coley , N. Pelavas 2005
We algebraically classify some higher dimensional spacetimes, including a number of vacuum solutions of the Einstein field equations which can represent higher dimensional black holes. We discuss some consequences of this work.
131 - A. Coley , A. Fuster , S. Hervik 2006
We present the explicit metric forms for higher dimensional vanishing scalar invariant (VSI) Lorentzian spacetimes. We note that all of the VSI spacetimes belong to the higher dimensional Kundt class. We determine all of the VSI spacetimes which admit a covariantly constant null vector, and we note that in general in higher dimensions these spacetimes are of Ricci type III and Weyl type III. The Ricci type N subclass is related to the chiral null models and includes the relativistic gyratons and the higher dimensional pp-wave spacetimes. The spacetimes under investigation are of particular interest since they are solutions of supergravity or superstring theory.
We show that the causal properties of asymptotically flat spacetimes depend on their dimensionality: while the time-like future of any point in the past conformal infinity $mathcal{I}^-$ contains the whole of the future conformal infinity $mathcal{I}^+$ in $(2+1)$ and $(3+1)$ dimensional Schwarzschild spacetimes, this property (which we call the Penrose property) does not hold for $(d+1)$ dimensional Schwarzschild if $d>3$. We also show that the Penrose property holds for the Kerr solution in $(3+1)$ dimensions, and discuss the connection with scattering theory in the presence of positive mass.
138 - Marcello Ortaggio 2014
We study the fall-off behaviour of test electromagnetic fields in higher dimensions as one approaches infinity along a congruence of expanding null geodesics. The considered backgrounds are Einstein spacetimes including, in particular, (asymptotically) flat and (anti-)de Sitter spacetimes. Various possible boundary conditions result in different characteristic fall-offs, in which the leading component can be of any algebraic type (N, II or G). In particular, the peeling-off of radiative fields F=Nr^{1-n/2}+Gr^{-n/2}+... differs from the standard four-dimensional one (instead it qualitatively resembles the recently determined behaviour of the Weyl tensor in higher dimensions). General p-form fields are also briefly discussed. In even n dimensions, the special case p=n/2 displays unique properties and peels off in the standard way as F=Nr^{1-n/2}+IIr^{-n/2}+.... A few explicit examples are mentioned.
We prove that any asymptotically flat static spacetime in higher dimensional Einstein-Maxwell theory must have no magnetic field. This implies that there are no static soliton spacetimes and completes the classification of static non-extremal black holes in this theory. In particular, these results establish that there are no asymptotically flat static spacetimes with non-trivial topology, with or without a black hole, in Einstein-Maxwell theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا