Well-Posed Initial-Boundary Evolution in General Relativity


Abstract in English

Maximally dissipative boundary conditions are applied to the initial-boundary value problem for Einsteins equations in harmonic coordinates to show that it is well-posed for homogeneous boundary data and for boundary data that is small in a linearized sense. The method is implemented as a nonlinear evolution code which satisfies convergence tests in the nonlinear regime and is robustly stable in the weak field regime. A linearized version has been stably matched to a characteristic code to compute the gravitational waveform radiated to infinity.

Download