No Arabic abstract
The sensitivity of a pair of VIRGO interferometers to gravitational waves backgrounds (GW) of cosmological origin is analyzed for the cases of maximal and minimal overlap of the two detectors. The improvements in the detectability prospects of scale-invariant and non-scale-invariant logarithmic energy spectra of relic GW are discussed.
We review detection methods that are currently in use or have been proposed to search for a stochastic background of gravitational radiation. We consider both Bayesian and frequentist searches using ground-based and space-based laser interferometers, spacecraft Doppler tracking, and pulsar timing arrays; and we allow for anisotropy, non-Gaussianity, and non-standard polarization states. Our focus is on relevant data analysis issues, and not on the particular astrophysical or early Universe sources that might give rise to such backgrounds. We provide a unified treatment of these searches at the level of detector response functions, detection sensitivity curves, and, more generally, at the level of the likelihood function, since the choice of signal and noise models and prior probability distributions are actually what define the search. Pedagogical examples are given whenever possible to compare and contrast different approaches. We have tried to make the article as self-contained and comprehensive as possible, targeting graduate students and new researchers looking to enter this field.
We calculate the sensitivity to a circular polarization of an isotropic stochastic gravitational wave background (ISGWB) as a function of frequency for ground- and space-based interferometers and observations of the cosmic microwave background. The origin of a circularly polarized ISGWB may be due to exotic primordial physics (i.e., parity violation in the early universe) and may be strongly frequency dependent. We present calculations within a coherent framework which clarifies the basic requirements for sensitivity to circular polarization, in distinction from previous work which focused on each of these techniques separately. We find that the addition of an interferometer with the sensitivity of the Einstein Telescope in the southern hemisphere improves the sensitivity of the ground-based network to circular polarization by about a factor of two. The sensitivity curves presented in this paper make clear that the wide range in frequencies of current and planned observations ($10^{-18} {rm Hz} lesssim f lesssim 100 {rm Hz}$) will be critical to determining the physics that underlies any positive detection of circular polarization in the ISGWB. We also identify a desert in circular polarization sensitivity for frequencies between $10^{-15} {rm Hz} lesssim f lesssim 10^{-3} {rm Hz}$, given the inability for pulsar timing arrays and indirect-detection methods to distinguish the gravitational wave polarization.
We make forecasts for the impact a future midband space-based gravitational wave experiment, most sensitive to $10^{-2}- 10$ Hz, could have on potential detections of cosmological stochastic gravitational wave backgrounds (SGWBs). Specific proposed midband experiments considered are TianGo, B-DECIGO and AEDGE. We propose a combined power-law integrated sensitivity (CPLS) curve combining GW experiments over different frequency bands, which shows the midband improves sensitivity to SGWBs by up to two orders of magnitude at $10^{-2} - 10$ Hz. We consider GW emission from cosmic strings and phase transitions as benchmark examples of cosmological SGWBs. We explicitly model various astrophysical SGWB sources, most importantly from unresolved black hole mergers. Using Markov Chain Monte Carlo, we demonstrated that midband experiments can, when combined with LIGO A+ and LISA, significantly improve sensitivities to cosmological SGWBs and better separate them from astrophysical SGWBs. In particular, we forecast that a midband experiment improves sensitivity to cosmic string tension $Gmu$ by up to a factor of $10$, driven by improved component separation from astrophysical sources. For phase transitions, a midband experiment can detect signals peaking at $0.1 - 1$ Hz, which for our fiducial model corresponds to early Universe temperatures of $T_*sim 10^4 - 10^6$ GeV, generally beyond the reach of LIGO and LISA. The midband closes an energy gap and better captures characteristic spectral shape information. It thus substantially improves measurement of the properties of phase transitions at lower energies of $T_* sim O(10^3)$ GeV, potentially relevant to new physics at the electroweak scale, whereas in this energy range LISA alone will detect an excess but not effectively measure the phase transition parameters. Our modelling code and chains are publicly available.
The Virgo detector is a kilometer-length interferometer for gravitational wave detection located near Pisa (Italy). During its second science run (VSR2) in 2009, six months of data were accumulated with a sensitivity close to its design. In this paper, the methods used to determine the parameters for sensitivity estimation and gravitational wave reconstruction are described. The main quantities to be calibrated are the frequency response of the mirror actuation and the sensing of the output power. Focus is also put on their absolute timing. The monitoring of the calibration data as well as the parameter estimation with independent techniques are discussed to provide an estimation of the calibration uncertainties. Finally, the estimation of the Virgo sensitivity in the frequency-domain is described and typical sensitivities measured during VSR2 are shown.
The recent Advanced LIGO and Advanced Virgo joint observing runs have not claimed a stochastic gravitational-wave background detection, but one expects this to change as the sensitivity of the detectors improves. The challenge of claiming a true detection will be immediately succeeded by the difficulty of relating the signal to the sources that contribute to it. In this paper, we consider backgrounds that comprise compact binary coalescences and additional cosmological sources, and we set simultaneous upper limits on these backgrounds. We find that the Advanced LIGO, Advanced Virgo network, operating at design sensitivity, will not allow for separation of the sources we consider. Third generation detectors, sensitive to most individual compact binary mergers, can reduce the astrophysical signal via subtraction of individual sources, and potentially reveal a cosmological background. Our Bayesian analysis shows that, assuming a detector network containing Cosmic Explorer and Einstein Telescope and reasonable levels of individual source subtraction, we can detect cosmological signals $Omega_{rm{CS}} (25,rm{Hz})=4.5 times 10^{-13}$ for cosmic strings, and $Omega_{rm BPL}(25,rm{Hz})= 2.2 times 10^{-13}$ for a broken power law model of an early universe phase transition.