Do you want to publish a course? Click here

Integrable geodesic flows of non-holonomic metrics

105   0   0.0 ( 0 )
 Added by Iskander Taimanov
 Publication date 1996
  fields
and research's language is English




Ask ChatGPT about the research

Normal geodesic flows flows of Carnot-Caratheodory are discussed from the point of view of the theory of Hamiltonian systems. The geodesic flows corresponding to left-invariant metrics and left- and -right-invariant rank 2 distributions on the three-dimensional Heisenberg group are analysed as integrable systems. The flows corresponding to left-invariant metrics and left-invariant distributions on Lie groups are reduced to Euler equations on Lie groups. Relation of these constructions to problems of analytical mechanics is discussed.



rate research

Read More

We show that an invariant surface allows to construct the Jacobi vector field along a geodesic and construct the formula for the normal component of the Jacobi field. If a geodesic is the transversal intersection of two invariant surfaces (such situation we have, for example, if the geodesic is hyperbolic), then we can construct a fundamental solution of the the Jacobi-Hill equation. This is done for quadratically integrable geodesic flows.
114 - V.S. Matveev 1997
In the present paper we prove, that if the geodesic flow of a metric G on the torus T is quadratically integrable, then the torus T isometrically covers a torus with a Liouville metric on it, and describe the set of quadratically integrable geodesic flows on the Klein bottle.
For any toric automorphism with only real eigenvalues a Riemannian metric with an integrable geodesic flow on the suspension of this automorphism is constructed. A qualitative analysis of such a flow on a three-solvmanifold constructed by the authors in math.DG/9905078 is done. This flow is an example of the geodesic flow, which has vanishing Liouville entropy and, moreover, is integrable but has positive topological entropy. The authors also discuss some open problems on integrability of geodesic flows and related subjects.
The geometric approach to optimal transport and information theory has triggered the interpretation of probability densities as an infinite-dimensional Riemannian manifold. The most studied Riemannian structures are Ottos metric, yielding the $L^2$-Wasserstein distance of optimal mass transport, and the Fisher--Rao metric, predominant in the theory of information geometry. On the space of smooth probability densities, none of these Riemannian metrics are geodesically complete---a property desirable for example in imaging applications. That is, the existence interval for solutions to the geodesic flow equations cannot be extended to the whole real line. Here we study a class of Hamilton--Jacobi-like partial differential equations arising as geodesic flow equations for higher-order Sobolev type metrics on the space of smooth probability densities. We give order conditions for global existence and uniqueness, thereby providing geodesic completeness. The system we study is an interesting example of a flow equation with loss of derivatives, which is well-posed in the smooth category, yet non-parabolic and fully non-linear. On a more general note, the paper establishes a link between geometric analysis on the space of probability densities and analysis of Euler-Arnold equations in topological hydrodynamics.
145 - I.A. Taimanov 2016
The problem of the existence of an additional (independent on the energy) first integral, of a geodesic (or magnetic geodesic) flow, which is polynomial in momenta is studied. The relation of this problem to the existence of nontrivial solutions of stationary dispersionless limits of two-dimensional soliton equations is demonstrated. The nonexistence of an additional quadratic first integral is established for certain classes of magnetic geodesic flows.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا