Do you want to publish a course? Click here

Staging Transformations for Multimodal Web Interaction Management

96   0   0.0 ( 0 )
 Added by Saverio Perugini
 Publication date 2003
and research's language is English




Ask ChatGPT about the research

Multimodal interfaces are becoming increasingly ubiquitous with the advent of mobile devices, accessibility considerations, and novel software technologies that combine diverse interaction media. In addition to improving access and delivery capabilities, such interfaces enable flexible and personalized dialogs with websites, much like a conversation between humans. In this paper, we present a software framework for multimodal web interaction management that supports mixed-initiative dialogs between users and websites. A mixed-initiative dialog is one where the user and the website take turns changing the flow of interaction. The framework supports the functional specification and realization of such dialogs using staging transformations -- a theory for representing and reasoning about dialogs based on partial input. It supports multiple interaction interfaces, and offers sessioning, caching, and co-ordination functions through the use of an interaction manager. Two case studies are presented to illustrate the promise of this approach.



rate research

Read More

We present dialogue management routines for a system to engage in multiparty agent-infant interaction. The ultimate purpose of this research is to help infants learn a visual sign language by engaging them in naturalistic and socially contingent conversations during an early-life critical period for language development (ages 6 to 12 months) as initiated by an artificial agent. As a first step, we focus on creating and maintaining agent-infant engagement that elicits appropriate and socially contingent responses from the baby. Our system includes two agents, a physical robot and an animated virtual human. The systems multimodal perception includes an eye-tracker (measures attention) and a thermal infrared imaging camera (measures patterns of emotional arousal). A dialogue policy is presented that selects individual actions and planned multiparty sequences based on perceptual inputs about the babys internal changing states of emotional engagement. The present version of the system was evaluated in interaction with 8 babies. All babies demonstrated spontaneous and sustained engagement with the agents for several minutes, with patterns of conversationally relevant and socially contingent behaviors. We further performed a detailed case-study analysis with annotation of all agent and baby behaviors. Results show that the babys behaviors were generally relevant to agent conversations and contained direct evidence for socially contingent responses by the baby to specific linguistic samples produced by the avatar. This work demonstrates the potential for language learning from agents in very young babies and has especially broad implications regarding the use of artificial agents with babies who have minimal language exposure in early life.
Sleep staging is fundamental for sleep assessment and disease diagnosis. Although previous attempts to classify sleep stages have achieved high classification performance, several challenges remain open: 1) How to effectively extract salient waves in multimodal sleep data; 2) How to capture the multi-scale transition rules among sleep stages; 3) How to adaptively seize the key role of specific modality for sleep staging. To address these challenges, we propose SalientSleepNet, a multimodal salient wave detection network for sleep staging. Specifically, SalientSleepNet is a temporal fully convolutional network based on the $rm U^2$-Net architecture that is originally proposed for salient object detection in computer vision. It is mainly composed of two independent $rm U^2$-like streams to extract the salient features from multimodal data, respectively. Meanwhile, the multi-scale extraction module is designed to capture multi-scale transition rules among sleep stages. Besides, the multimodal attention module is proposed to adaptively capture valuable information from multimodal data for the specific sleep stage. Experiments on the two datasets demonstrate that SalientSleepNet outperforms the state-of-the-art baselines. It is worth noting that this model has the least amount of parameters compared with the existing deep neural network models.
308 - Maksims Volkovs 2015
We present our solution to the Yandex Personalized Web Search Challenge. The aim of this challenge was to use the historical search logs to personalize top-N document rankings for a set of test users. We used over 100 features extracted from user- and query-depended contexts to train neural net and tree-based learning-to-rank and regression models. Our final submission, which was a blend of several different models, achieved an NDCG@10 of 0.80476 and placed 4th amongst the 194 teams winning 3rd prize.
We view channels as the main form of resources in a message-passing programming paradigm. These channels need to be carefully managed in settings where resources are scarce. To study this problem, we extend the pi-calculus with primitives for channel allocation and deallocation and allow channels to be reused to communicate values of different types. Inevitably, the added expressiveness increases the possibilities for runtime errors. We define a substructural type system which combines uniqueness typing and affine typing to reject these ill-behaved programs.
174 - Z. Akbar , L.T. Handoko 2008
The focused web-harvesting is deployed to realize an automated and comprehensive index databases as an alternative way for virtual topical data integration. The web-harvesting has been implemented and extended by not only specifying the targeted URLs, but also predefining human-edited harvesting parameters to improve the speed and accuracy. The harvesting parameter set comprises three main components. First, the depth-scale of being harvested final pages containing desired information counted from the first page at the targeted URLs. Secondly, the focus-point number to determine the exact box containing relevant information. Lastly, the combination of keywords to recognize encountered hyperlinks of relevant images or full-texts embedded in those final pages. All parameters are accessible and fully customizable for each target by the administrators of participating institutions over an integrated web interface. A real implementation to the Indonesian Scientific Index which covers all scientific information across Indonesia is also briefly introduced.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا