Do you want to publish a course? Click here

Reliability Conditions in Quadrature Algorithms

159   0   0.0 ( 0 )
 Added by Gheorghe Adam
 Publication date 2003
and research's language is English




Ask ChatGPT about the research

The detection of insufficiently resolved or ill-conditioned integrand structures is critical for the reliability assessment of the quadrature rule outputs. We discuss a method of analysis of the profile of the integrand at the quadrature knots which allows inferences approaching the theoretical 100% rate of success, under error estimate sharpening. The proposed procedure is of the highest interest for the solution of parametric integrals arising in complex physical models.



rate research

Read More

We describe a strategy for rigorous arbitrary-precision evaluation of Legendre polynomials on the unit interval and its application in the generation of Gauss-Legendre quadrature rules. Our focus is on making the evaluation practical for a wide range of realistic parameters, corresponding to the requirements of numerical integration to an accuracy of about 100 to 100 000 bits. Our algorithm combines the summation by rectangular splitting of several types of expansions in terms of hypergeometric series with a fixed-point implementation of Bonnets three-term recurrence relation. We then compute rigorous enclosures of the Gauss-Legendre nodes and weights using the interval Newton method. We provide rigorous error bounds for all steps of the algorithm. The approach is validated by an implementation in the Arb library, which achieves order-of-magnitude speedups over previous code for computing Gauss-Legendre rules with simultaneous high degree and precision.
422 - M. Andrecut 2008
Principal component analysis (PCA) is a key statistical technique for multivariate data analysis. For large data sets the common approach to PCA computation is based on the standard NIPALS-PCA algorithm, which unfortunately suffers from loss of orthogonality, and therefore its applicability is usually limited to the estimation of the first few components. Here we present an algorithm based on Gram-Schmidt orthogonalization (called GS-PCA), which eliminates this shortcoming of NIPALS-PCA. Also, we discuss the GPU (Graphics Processing Unit) parallel implementation of both NIPALS-PCA and GS-PCA algorithms. The numerical results show that the GPU parallel optimize
113 - Matthias Petschow 2013
The real symmetric tridiagonal eigenproblem is of outstanding importance in numerical computations; it arises frequently as part of eigensolvers for standard and generalized dense Hermitian eigenproblems that are based on a reduction to tridiagonal form. For its solution, the algorithm of Multiple Relatively Robust Representations (MRRR) is among the fastest methods. Although fast, the solvers based on MRRR do not deliver the same accuracy as competing methods like Divide & Conquer or the QR algorithm. In this paper, we demonstrate that the use of mixed precisions leads to improved accuracy of MRRR-based eigensolvers with limited or no performance penalty. As a result, we obtain eigensolvers that are not only equally or more accurate than the best available methods, but also -in most circumstances- faster and more scalable than the competition.
Gaussian elimination with full pivoting generates a PLUQ matrix decomposition. Depending on the strategy used in the search for pivots, the permutation matrices can reveal some information about the row or the column rank profiles of the matrix. We propose a new pivoting strategy that makes it possible to recover at the same time both row and column rank profiles of the input matrix and of any of its leading sub-matrices. We propose a rank-sensitive and quad-recursive algorithm that computes the latter PLUQ triangular decomposition of an m times n matrix of rank r in O(mnr^{omega-2}) field operations, with omega the exponent of matrix multiplication. Compared to the LEU decomposition by Malashonock, sharing a similar recursive structure, its time complexity is rank sensitive and has a lower leading constant. Over a word size finite field, this algorithm also improveLs the practical efficiency of previously known implementations.
ODE Test Problems (OTP) is an object-oriented MATLAB package offering a broad range of initial value problems which can be used to test numerical methods such as time integration methods and data assimilation (DA) methods. It includes problems that are linear and nonlinear, homogeneous and nonhomogeneous, autonomous and nonautonomous, scalar and high-dimensional, stiff and nonstiff, and chaotic and nonchaotic. Many are real-world problems from fields such as chemistry, astrophysics, meteorology, and electrical engineering. OTP also supports partitioned ODEs for testing IMEX methods, multirate methods, and other multimethods. Functions for plotting solutions and creating movies are available for all problems, and exact solutions are provided when available. OTP is desgined for ease of use-meaning that working with and modifying problems is simple and intuitive.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا