Do you want to publish a course? Click here

Learning to Filter Spam E-Mail: A Comparison of a Naive Bayesian and a Memory-Based Approach

341   0   0.0 ( 0 )
 Added by Ion Androutsopoulos
 Publication date 2000
and research's language is English




Ask ChatGPT about the research

We investigate the performance of two machine learning algorithms in the context of anti-spam filtering. The increasing volume of unsolicited bulk e-mail (spam) has generated a need for reliable anti-spam filters. Filters of this type have so far been based mostly on keyword patterns that are constructed by hand and perform poorly. The Naive Bayesian classifier has recently been suggested as an effective method to construct automatically anti-spam filters with superior performance. We investigate thoroughly the performance of the Naive Bayesian filter on a publicly available corpus, contributing towards standard benchmarks. At the same time, we compare the performance of the Naive Bayesian filter to an alternative memory-based learning approach, after introducing suitable cost-sensitive evaluation measures. Both methods achieve very accurate spam filtering, outperforming clearly the keyword-based filter of a widely used e-mail reader.



rate research

Read More

The growing problem of unsolicited bulk e-mail, also known as spam, has generated a need for reliable anti-spam e-mail filters. Filters of this type have so far been based mostly on manually constructed keyword patterns. An alternative approach has recently been proposed, whereby a Naive Bayesian classifier is trained automatically to detect spam messages. We test this approach on a large collection of personal e-mail messages, which we make publicly available in encrypted form contributing towards standard benchmarks. We introduce appropriate cost-sensitive measures, investigating at the same time the effect of attribute-set size, training-corpus size, lemmatization, and stop lists, issues that have not been explored in previous experiments. Finally, the Naive Bayesian filter is compared, in terms of performance, to a filter that uses keyword patterns, and which is part of a widely used e-mail reader.
We evaluate empirically a scheme for combining classifiers, known as stacked generalization, in the context of anti-spam filtering, a novel cost-sensitive application of text categorization. Unsolicited commercial e-mail, or spam, floods mailboxes, causing frustration, wasting bandwidth, and exposing minors to unsuitable content. Using a public corpus, we show that stacking can improve the efficiency of automatically induced anti-spam filters, and that such filters can be used in real-life applications.
It has recently been argued that a Naive Bayesian classifier can be used to filter unsolicited bulk e-mail (spam). We conduct a thorough evaluation of this proposal on a corpus that we make publicly available, contributing towards standard benchmarks. At the same time we investigate the effect of attribute-set size, training-corpus size, lemmatization, and stop-lists on the filters performance, issues that had not been previously explored. After introducing appropriate cost-sensitive evaluation measures, we reach the conclusion that additional safety nets are needed for the Naive Bayesian anti-spam filter to be viable in practice.
63 - Ted Pedersen 2000
This paper presents a corpus-based approach to word sense disambiguation that builds an ensemble of Naive Bayesian classifiers, each of which is based on lexical features that represent co--occurring words in varying sized windows of context. Despite the simplicity of this approach, empirical results disambiguating the widely studied nouns line and interest show that such an ensemble achieves accuracy rivaling the best previously published results.
100 - Siqi Liu 2020
We use over 350,000 Yelp reviews on 5,000 restaurants to perform an ablation study on text preprocessing techniques. We also compare the effectiveness of several machine learning and deep learning models on predicting user sentiment (negative, neutral, or positive). For machine learning models, we find that using binary bag-of-word representation, adding bi-grams, imposing minimum frequency constraints and normalizing texts have positive effects on model performance. For deep learning models, we find that using pre-trained word embeddings and capping maximum length often boost model performance. Finally, using macro F1 score as our comparison metric, we find simpler models such as Logistic Regression and Support Vector Machine to be more effective at predicting sentiments than more complex models such as Gradient Boosting, LSTM and BERT.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا