No Arabic abstract
The specific heat of Nd(Y)Ba2Cu3Ox single crystals without substitution of Nd for Ba has been measured for various oxygen contents. In comparison with YBa2Cu3Ox, the maximum attainable transition temperature of the crystals is about 4 K higher and shifted from x = 6.92 to x = 7.0, the highest possible oxygen content. In spite of the difference in the Tc(x) dependences, the jump in the specific heat DeltaC/Tc in both systems increases continuously being maximum at x = 7.0. Bond valence sum calculations based on neutron diffraction data point to a retarded generation of holes with increasing oxygen content in the Nd system and a different hole distribution between the chains and the planes in comparison to YBa2Cu3Ox accounting for the different behaviour of both systems.
We measured resistivity and specific heat of high-quality CsFe$_2$As$_2$ single crystals, which were grown by using a self-flux method. The CsFe$_2$As$_2$ crystal shows sharp superconducting transition at 1.8 K with the transition width of 0.1 K. The sharp superconducting transition and pronounced jump in specific heat indicate high quality of the crystals. Analysis on the superconducting-state specific heat supports unconventional pairing symmetry in CsFe$_2$As$_2$.
The results of the comprehensive ultrasonic research of high quality single crystals of FeSe are presented. Absolute values of sound velocities and their temperature dependences were measured; elastic constants and Debye temperature were calculated. The elastic C11-C12 and C11 constants undergo significant softening under the structural tetra-ortho transformation. The significant influence of the superconducting transition on the velocity and attenuation of sound was revealed and the value of the superconducting energy gap was estimated.
Interlayer tunneling spectroscopy measurements were performed on mesa arrays of Bi-2212 single crystals, intercalated with HgBr$_2$. Tunneling conductances were obtained over a wide temperature range to examine the spectral features, especially the behavior of the quasiparticle peaks corresponding to superconducting energy gaps (SGs). Experimental spectra showed that gap-like features are still present even for the temperatures far above the transition temperature, T$_c$. This evidence is consistent with the idea that the SG evolves into a pseudogap above T$_c$ for HgBr$_2$-intercalated Bi-2212 single crystals.
We have investigated the specific heat of optimally-doped iron chalcogenide superconductor Fe(Te0.57Se0.43) with a high-quality single crystal sample. The electronic specific heat Ce of this sample has been successfully separated from the phonon contribution using the specific heat of a non-superconducting sample (Fe0.90Cu0.10)(Te0.57Se0.43) as a reference. The normal state Sommerfeld coefficient gamma_n of the superconducting sample is found to be ~ 26.6 mJ/mol K^2, indicating intermediate electronic correlation. The temperature dependence of Ce in the superconducting state can be best fitted using a double-gap model with 2Delta_s(0)/kBTc = 3.92 and 2Delta_l(0)/kBTc = 5.84. The large gap magnitudes derived from fitting, as well as the large specific heat jump of Delta_Ce(Tc)/gamma_n*Tc ~ 2.11, indicate strong-coupling superconductivity. Furthermore, the magnetic field dependence of specific heat shows strong evidence for multiband superconductivity.
Single crystals of the compound LaFePO were prepared using a flux growth technique at high temperatures. Electrical resistivity measurements reveal metallic behavior and a resistive transition to the superconducting state at a critical temperature T_c ~ 6.6 K. Magnetization measurements also show the onset of superconductivity near 6 K. In contrast, specific heat measurements manifest no discontinuity at T_c. These results lend support to the conclusion that the superconductivity is associated with oxygen vacancies that alter the carrier concentration in a small fraction of the sample, although superconductivity characterized by an unusually small gap value can not be ruled-out. Under applied magnetic fields, T_c is suppressed anisotropically for fields perpendicular and parallel to the ab-plane, suggesting that the crystalline anisotropy strongly influences the superconducting state. Preliminary high-pressure measurements show that T_c passes through a maximum of nearly 14 K at ~ 110 kbar, demonstrating that significantly higher T_c values may be achieved in the phosphorus-based oxypnictides.