No Arabic abstract
The impact of the normal-state pseudogap, present in all optimal and underdoped HTS cuprates, on critical currents and critical temperature is surveyed. With the opening of the pseudogap around a doping state of p=0.19 the condensation energy and superfluid density are rapidly suppressed due to reduction in the normal-state spectral weight. Even by optimal doping (p=0.16) these measures of the strength of superconductivity are diminished by up to 40%. This results in a sharp reduction in critical currents and irreversibility field, respectively. The optimal doping state where these properties are maximised is therefore not at maximum Tc but in the lightly overdoped region where the pseudogap energy falls to zero at p=0.19. The presence of impurities and grain boundaries further heightens these effects.
We measure the local harmonic generation from superconducting thin films at microwave frequencies to investigate the intrinsic nonlinear Meissner effect near Tc in zero magnetic field. Both second and third harmonic generation are measured to identify time-reversal symmetry breaking (TRSB) and time-reversal symmetric (TRS) nonlinearities. We perform a systematic doping-dependent study of the nonlinear response and find that the TRS characteristic nonlinearity current density scale follows the doping dependence of the de-pairing critical current density. We also extract a spontaneous TRSB characteristic current density scale that onsets at Tc, grows with decreasing temperature, and systematically decreases in magnitude (at fixed T/Tc) with under-doping. The origin of this current scale could be Josephson circulating currents or the spontaneous magnetization associated with a TRSB order parameter.
One of the key motivations for the development of atomically resolved spectroscopic imaging STM (SI-STM) has been to probe the electronic structure of cuprate high temperature superconductors. In both the d-wave superconducting (dSC) and the pseudogap (PG) phases of underdoped cuprates, two distinct classes of electronic states are observed using SI-STM. The first class consists of the dispersive Bogoliubov quasiparticles of a homogeneous d-wave superconductor. These are detected below a lower energy scale |E|={Delta}0 and only upon a momentum space (k-space) arc which terminates near the lines connecting k=pm({pi}/a0,0) to k=pm(0, {pi}/a0). In both the dSC and PG phases, the only broken symmetries detected in the |E|leq {Delta}0 states are those of a d-wave superconductor. The second class of states occurs at energies near the pseudogap energy scale |E| {Delta}1 which is associated conventionally with the antinodal states near k=pm({pi}/a0,0) and k=pm(0, {pi}/a0). We find that these states break the 90o-rotational (C4) symmetry of electronic structure within CuO2 unit cells, at least down to 180o rotational (C2) symmetry (nematic) but in a spatially disordered fashion. This intra-unit-cell C4 symmetry breaking coexists at |E| {Delta}1 with incommensurate conductance modulations locally breaking both rotational and translational symmetries (smectic). The properties of these two classes of |E| {Delta}1 states are indistinguishable in the dSC and PG phases. To explain this segregation of k-space into the two regimes distinguished by the symmetries of their electronic states and their energy scales |E| {Delta}1 and |E|leq{Delta}0, and to understand how this impacts the electronic phase diagram and the mechanism of high-Tc superconductivity, represents one of a key challenges for cuprate studies.
We develop a model for high-Tc superconductors based on an electronic phase separation where low-and high-density domains are formed. At low temperatures this system may act as a granular superconductor forming an array of Josephson junctions. Cuprates are also known to have low superfluid densities and strong correlation effects. Both characteristics activate a negative Josephson coupling due to frustration that leads to spontaneous currents responsible for the weak ferromagnetic order. This original approach reproduces the observed onset of spontaneous magnetic signal and its dependence on the doping level.
A fundamental question of high-temperature superconductors is the nature of the pseudogap phase which lies between the Mott insulator at zero doping and the Fermi liquid at high doping p. Here we report on the behaviour of charge carriers near the zero-temperature onset of that phase, namely at the critical doping p* where the pseudogap temperature T* goes to zero, accessed by investigating a material in which superconductivity can be fully suppressed by a steady magnetic field. Just below p*, the normal-state resistivity and Hall coefficient of La1.6-xNd0.4SrxCuO4 are found to rise simultaneously as the temperature drops below T*, revealing a change in the Fermi surface with a large associated drop in conductivity. At p*, the resistivity shows a linear temperature dependence as T goes to zero, a typical signature of a quantum critical point. These findings impose new constraints on the mechanisms responsible for inelastic scattering and Fermi surface transformation in theories of the pseudogap phase.
Large pulsed magnetic fields up to 60 Tesla are used to suppress the contribution of superconducting fluctuations (SCF) to the ab-plane conductivity above Tc in a series of YBa2Cu3O(6+x). These experiments allow us to determine the field Hc(T) and the temperature Tc above which the SCFs are fully suppressed. A careful investigation near optimal doping shows that Tc is higher than the pseudogap temperature T*, which is an unambiguous evidence that the pseudogap cannot be assigned to preformed pairs. Accurate determinations of the SCF contribution to the conductivity versus temperature and magnetic field have been achieved. They can be accounted for by thermal fluctuations following the Ginzburg-Landau scheme for nearly optimally doped samples. A phase fluctuation contribution might be invoked for the most underdoped samples in a T range which increases when controlled disorder is introduced by electron irradiation. Quantitative analysis of the fluctuating magnetoconductance allows us to determine the critical field Hc2(0) which is found to be be quite similar to Hc(0) and to increase with hole doping. Studies of the incidence of disorder on both Tc and T* allow us to propose a three dimensional phase diagram including a disorder axis, which allows to explain most observations done in other cuprate families.