Do you want to publish a course? Click here

Nanoconstriction Microscopy of the Giant Magnetoresistance in Cobalt/Copper Spin Valves

312   0   0.0 ( 0 )
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use nanometer-sized point contacts to a Co/Cu spin valve to study the giant magnetoresistance (GMR) of only a few Co domains. The measured data show strong device-to-device differences of the GMR curve, which we attribute to the absence of averaging over many domains. The GMR ratio decreases with increasing bias current. For one particular device, this is accompanied by the development of two distinct GMR plateaus, the plateau level depending on bias polarity and sweep direction of the magnetic field. We attribute the observed behavior to current-induced changes of the magnetization, involving spin transfer due to incoherent emission of magnons and self-field effects.



rate research

Read More

138 - Y. Fukuma , L. Wang , H. Idzuchi 2011
The nonlocal spin injection in lateral spin valves is highly expected to be an effective method to generate a pure spin current for potential spintronic application. However, the spin valve voltage, which decides the magnitude of the spin current flowing into an additional ferromagnetic wire, is typically of the order of 1 {mu}V. Here we show that lateral spin valves with low resistive NiFe/MgO/Ag junctions enable the efficient spin injection with high applied current density, which leads to the spin valve voltage increased hundredfold. Hanle effect measurements demonstrate a long-distance collective 2-pi spin precession along a 6 {mu}m long Ag wire. These results suggest a route to faster and manipulable spin transport for the development of pure spin current based memory, logic and sensing devices.
We performed non-local electrical measurements of a series of Py/Cu lateral spin valve devices with different Cu thicknesses. We show that both the spin diffusion length of Cu and the apparent spin polarization of Py increase with Cu thickness. By fitting the results to a modified spin-diffusion model, we show that the spin diffusion length of Cu is dominated by spin-flip scattering at the surface. In addition, the dependence of spin polarization of Py on Cu thickness is due to a strong spin-flip scattering at the Py/Cu interface.
289 - M. Gmitra , J. Barnas 2009
Angular variation of giant magnetoresistance and spin-transfer torque in metallic spin-valve heterostructures is analyzed theoretically in the limit of diffusive transport. It is shown that the spin-transfer torque in asymmetric spin valves can vanish in non-collinear magnetic configurations, and such a non-standard behavior of the torque is generally associated with a non-monotonic angular dependence of the giant magnetoresistance, with a global minimum at a non-collinear magnetic configuration.
Giant magneto-Seebeck (GMS) effect was observed in Co/Cu/Co and NiFe/Cu/Co spin valves. Their Seebeck coefficients in parallel state was larger than that in antiparallel state, and GMS ratio defined as (SAP-SP)/SP could reach -9% in our case. The GMS originated not only from trivial giant magnetoresistance but also from spin current generated due to spin polarized thermoelectric conductivity in ferromagnetic materials and subsequent modulation of the spin current by spin configurations in spin valves. Simple Mott two-channel model reproduced a -11% GMS for the Co/Cu/Co spin valves, qualitatively consistent with our observations. The GMS effect could be applied simultaneously sensing temperature gradient and magnetic field and also be possibly applied to determine spin polarization of thermoelectric conductivity and Seebeck coefficient in ferromagnetic thin films.
Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here we report novel multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI3) acts as a spin-filter tunnel barrier sandwiched between graphene contacts. We demonstrate tunneling magnetoresistance which is drastically enhanced with increasing CrI3 layer thickness, reaching a record 19,000% for magnetic multilayer structures using four-layer sf-MTJs at low temperatures. These devices also show multiple resistance states as a function of magnetic field, suggesting the potential for multi-bit functionalities using an individual vdW sf-MTJ. Using magnetic circular dichroism measurements, we attribute these effects to the intrinsic layer-by-layer antiferromagnetic ordering of the atomically thin CrI3. Our work reveals the possibility to push magnetic information storage to the atomically thin limit, and highlights CrI3 as a superlative magnetic tunnel barrier for vdW heterostructure spintronic devices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا