We construct a new spin-1 model on a chain. Its ground state is determined exactly which is three-fold degenerate by breaking translational invariance. Thus we have trimerization. Excited states cannot be obtained exactly, but we determine a few low-lying ones by using trial states, among them solitons.
Exact ground states of interacting electrons on the diamond Hubbard chain in a magnetic field are constructed which exhibit a wide range of properties such as flat-band ferromagnetism and correlation induced metallic, half-metallic or insulating behavior. The properties of these ground states can be tuned by changing the magnetic flux, local potentials, or electron density.
We use the matrix product approach to construct all optimum ground states of general anisotropic spin-2 chains with nearest neighbour interactions and common symmetries. These states are exact ground states of the model and their properties depend on up to three parameters. We find three different antiferromagnetic Haldane phases, one weak antiferromagnetic and one weak ferromagnetic phase. The antiferromagnetic phases can be described as spin liquids with exponentially decaying correlation functions. The variety of phases found with the matrix product ansatz also gives insight into the behaviour of spin chains with arbitrary higher spins.
We present a family of spin ladder models which admit exact solution for the ground state and exhibit non-Haldane spin liquid properties as predicted recently by Nersesyan and Tsvelik [Phys. Rev. Lett. v.78, 3939 (1997)], and study their excitation spectrum using a simple variational ansatz. The elementary excitation is neither a magnon nor a spinon, but a pair of propagating triplet or singlet solitons connecting two spontaneously dimerized ground states. Second-order phase transitions separate this phase from the Haldane phase and the rung-dimer phase.
We present an exact solution of an experimentally realizable and strongly interacting one-dimensional spin system which is a limiting case of a quantum Ising model with long range interaction in a transverse and longitudinal field. Pronounced quantum fluctuations lead to a strongly correlated liquid ground state. For open boundary conditions the ground state manifold consists of four degenerate sectors whose quantum numbers are determined by the orientation of the edge spins. Explicit expressions for the entanglement properties, the excitation gap as well as the exact wave functions for a couple of excited states are analytically derived and discussed.
We construct a class of exact ground states for correlated electrons on pentagon chains in the high density region and discuss their physical properties. In this procedure the Hamiltonian is first cast in a positive semidefinite form using composite operators as a linear combination of creation operators acting on the sites of finite blocks. In the same step, the interaction is also transformed to obtain terms which require for their minimum eigenvalue zero at least one electron on each site. The transformed Hamiltonian matches the original Hamiltonian through a nonlinear system of equations whose solutions place the deduced ground states in restricted regions of the parameter space. In the second step, nonlocal product wave functions in position space are constructed. They are proven to be unique ground states which describe non-saturated ferromagnetic and correlated half metallic states. These solutions emerge when the strength of the Hubbard interaction $U_i$ is site dependent inside the unit cell. In the deduced phases, the interactions tune the bare dispersive band structure such to develop an effective upper flat band. We show that this band flattening effect emerges for a broader class of chains and is not restricted to pentagon chains. For the characterization of the deduced solutions, uniqueness proofs, exact ground state expectation values for long-range hopping amplitudes and correlation functions are also calculated. The study of physical reasons which lead to the appearance of ferromagnetism has revealed a new mechanism for the emergence of an ordered phase, described here in details (because of lack of space see the continuation in the paper).