Do you want to publish a course? Click here

Scale Invariance and Lack of Self-Averaging in Fragmentation

69   0   0.0 ( 0 )
 Added by Eli Ben-Naim
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive exact statistical properties of a class of recursive fragmentation processes. We show that introducing a fragmentation probability 0<p<1 leads to a purely algebraic size distribution in one dimension, P(x) ~ x^{-2p}. In d dimensions, the volume distribution diverges algebraically in the small fragment limit, P(V)sim V^{-gamma} with gamma=2p^{1/d}. Hence, the entire range of exponents allowed by mass conservation is realized. We demonstrate that this fragmentation process is non-self-averaging. Specifically, the moments Y_alpha=sum_i x_i^{alpha} exhibit significant fluctuations even in the thermodynamic limit.



rate research

Read More

67 - Didier Sornette 1997
We discuss the concept of discrete scale invariance and how it leads to complex critical exponents (or dimensions), i.e. to the log-periodic corrections to scaling. After their initial suggestion as formal solutions of renormalization group equations in the seventies, complex exponents have been studied in the eighties in relation to various problems of physics embedded in hierarchical systems. Only recently has it been realized that discrete scale invariance and its associated complex exponents may appear ``spontaneously in euclidean systems, i.e. without the need for a pre-existing hierarchy. Examples are diffusion-limited-aggregation clusters, rupture in heterogeneous systems, earthquakes, animals (a generalization of percolation) among many other systems. We review the known mechanisms for the spontaneous generation of discrete scale invariance and provide an extensive list of situations where complex exponents have been found. This is done in order to provide a basis for a better fundamental understanding of discrete scale invariance. The main motivation to study discrete scale invariance and its signatures is that it provides new insights in the underlying mechanisms of scale invariance. It may also be very interesting for prediction purposes.
We study sample-to-sample fluctuations in a critical two-dimensional Ising model with quenched random ferromagnetic couplings. Using replica calculations in the renormalization group framework we derive explicit expressions for the probability distribution function of the critical internal energy and for the specific heat fluctuations. It is shown that the disorder distribution of internal energies is Gaussian, and the typical sample-to-sample fluctuations as well as the average value scale with the system size $L$ like $sim L lnln(L)$. In contrast, the specific heat is shown to be self-averaging with a distribution function that tends to a $delta$-peak in the thermodynamic limit $L to infty$. While previously a lack of self-averaging was found for the free energy, we here obtain results for quantities that are directly measurable in simulations, and implications for measurements in the actual lattice system are discussed.
74 - Hyunsuk Hong , Hyunggyu Park , 2006
The Binder cumulant (BC) has been widely used for locating the phase transition point accurately in systems with thermal noise. In systems with quenched disorder, the BC may show subtle finite-size effects due to large sample-to-sample fluctuations. We study the globally coupled Kuramoto model of interacting limit-cycle oscillators with random natural frequencies and find an anomalous dip in the BC near the transition. We show that the dip is related to non-self-averageness of the order parameter at the transition. Alternative definitions of the BC, which do not show any anomalous behavior regardless of the existence of non-self-averageness, are proposed.
120 - J. M. Fish , R. L. C. Vink 2010
We consider the isotropic-to-nematic transition in liquid crystals confined to aerogel hosts, and assume that the aerogel acts as a random field. We generally find that self-averaging is violated. For a bulk transition that is weakly first-order, the violation of self-averaging is so severe, even the correlation length becomes non-self-averaging: no phase transition remains in this case. For a bulk transition that is more strongly first-order, the violation of self-averaging is milder, and a phase transition is observed.
194 - N.G. Fytas , A. Malakis 2010
We investigate, by means of extensive Monte Carlo simulations, the magnetic critical behavior of the three-dimensional bimodal random-field Ising model at the strong disorder regime. We present results in favor of the two-exponent scaling scenario, $bar{eta}=2eta$, where $eta$ and $bar{eta}$ are the critical exponents describing the power-law decay of the connected and disconnected correlation functions and we illustrate, using various finite-size measures and properly defined noise to signal ratios, the strong violation of self-averaging of the model in the ordered phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا