Electron momentum density and Compton profiles in Lithium along $<100 >$, $<110>$, and $<111>$ directions are calculated using Full-Potential Linear Augmented Plane Wave basis within generalized gradient approximation. The profiles have been corrected for correlations with Lam-Platzman formulation using self-consistent charge density. The first and second derivatives of Compton profiles are studied to investigate the Fermi surface breaks. Decent agreement is observed between recent experimental and our calculated values. Our values for the derivatives are found to be in better agreement with experiments than earlier theoretical results. Two-photon momentum density and one- and two-dimensional angular correlation of positron annihilation radiation are also calculated within the same formalism and including the electron-positron enhancement factor.
We provide a straightforward and numerically efficient procedure to perform local density approximation + Hubbard I (LDA+HIA) calculations, including self-consistency over the charge density, within the full potential linearized augmented plane wave (FP-LAPW) method. This implementation is all-electron, includes spin-orbit interaction, and makes no shape approximations for the charge density. The method is applied to calculate selected heavy actinides in the paramagnetic phase. The electronic structure and spectral properties of Am and Cm metals obtained are in agreement with previous dynamical mean-field theory (LDA+DMFT) calculations and with available experimental data. We point out that the charge density self-consistent LDA+HIA calculations predict the $f$ charge on Bk to exceed the atomic integer $f^8$ value by 0.22.
A simultaneous analysis of high-resolution directional Compton profiles and two-dimensional angular correlation of positron annihilation experimental data has been performed by studying both a directional anisotropy of measured spectra and reconstructed densities. The results were compared with theoretical fully-relativistic augmented plane-wave calculations with and without including correlation effects. Estimated symmetry selection rules have allowed us to establish some values of Fermi momenta. Both experiments show exactly the same shape of the anisotropy of the momentum densities, in agreement with the band structure results. In the positron annihilation data electron-positron correlations are not seen while in both experiments electron-electron correlations are observed.
A reconstruction technique based on the solution of the Radon transform in terms of Jacobi polynomials is used to obtain the 3D electron momentum density rho(p) from nine high-resolution Compton profiles (CPs) for a Cu0.9Al0.1 disordered alloy single crystal. The method was also applied to theoretical CPs computed within the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) first-principles scheme for the same nine orientations of the crystal. The experimental density rho(p) is in satisfactory agreement with the theoretical density and shows most details of the Fermi surface (FS) and exhibits electron correlation effects. We comment on the map of the FS obtained by folding the reconstructed rho(p) into the first Brillouin zone which yields the occupation number density, rho(k). A test of the validity of data via a consistency condition (within our reconstruction algorithm) as well as the propagation of experimental noise in the reconstruction of both rho(p) and rho(k) are investigated.
Density functional theory is generalized to incorporate electron-phonon coupling. A Kohn-Sham equation yielding the electronic density $n_U(mathbf{r})$, a conditional probability density depending parametrically on the phonon normal mode amplitudes $U={U_{mathbf{q}lambda}}$, is coupled to the nuclear Schrodinger equation of the exact factorization method. The phonon modes are defined from the harmonic expansion of the nuclear Schrodinger equation. A nonzero Berry curvature on nuclear configuration space affects the phonon modes, showing that the potential energy surface alone is generally not sufficient to define the phonons. An orbital-dependent functional approximation for the non-adiabatic exchange-correlation energy reproduces the leading-order nonadiabatic electron-phonon-induced band structure renormalization in the Frohlich model.
We present valence electron Compton profiles calculated within the density-functional theory using the all-electron full-potential projector augmented-wave method (PAW). Our results for covalent (Si), metallic (Li, Al) and hydrogen-bonded ((H_2O)_2) systems agree well with experiments and computational results obtained with other band-structure and basis set schemes. The PAW basis set describes the high-momentum Fourier components of the valence wave functions accurately when compared with other basis set schemes and previous all-electron calculations.
Tunna Baruah
,Rajendra R. Zope
,Anjali Kshirsagar
.
(1999)
.
"Full potential LAPW calculation of electron momentum density and related properties of Li"
.
Rajendra R. Zope
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا