Do you want to publish a course? Click here

Numerical study on Anderson transitions in three-dimensional disordered systems in random magnetic fields

119   0   0.0 ( 0 )
 Added by Kawarabayashi Tohru
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Anderson transitions in a random magnetic field in three dimensions are investigated numerically. The critical behavior near the transition point is analyzed in detail by means of the transfer matrix method with high accuracy for systems both with and without an additional random scalar potential. We find the critical exponent $ u$ for the localization length to be $1.45 pm 0.09$ with a strong random scalar potential. Without it, the exponent is smaller but increases with the system sizes and extrapolates to the above value within the error bars. These results support the conventional classification of universality classes due to symmetry. Fractal dimensionality of the wave function at the critical point is also estimated by the equation-of-motion method.



rate research

Read More

The Anderson transition in three dimensions in a randomly varying magnetic flux is investigated in detail by means of the transfer matrix method with high accuracy. Both, systems with and without an additional random scalar potential are considered. We find a critical exponent of $ u=1.45pm0.09$ with random scalar potential. Without it, $ u$ is smaller but increases with the system size and extrapolates within the error bars to a value close to the above. The present results support the conventional classification of universality classes due to symmetry.
We present results on the first excited states for the random-field Ising model. These are based on an exact algorithm, with which we study the excitation energies and the excitation sizes for two- and three-dimensional random-field Ising systems with a Gaussian distribution of the random fields. Our algorithm is based on an approach of Frontera and Vives which, in some cases, does not yield the true first excited states. Using the corrected algorithm, we find that the order-disorder phase transition for three dimensions is visible via crossings of the excitations-energy curves for different system sizes, while in two-dimensions these crossings converge to zero disorder. Furthermore, we obtain in three dimensions a fractal dimension of the excitations cluster of d_s=2.42(2). We also provide analytical droplet arguments to understand the behavior of the excitation energies for small and large disorder as well as close to the critical point.
We study the finite-time dynamics of an initially localized wave-packet in the Anderson model on the random regular graph (RRG). Considering the full probability distribution $Pi(x,t)$ of a particle to be at some distance $x$ from the initial state at time $t$, we give evidence that $Pi(x,t)$ spreads sub-diffusively over a range of disorder strengths, wider than a putative non-ergodic phase. We provide a detailed analysis of the propagation of $Pi(x,t)$ in space-time $(x,t)$ domain, identifying four different regimes. These regimes in $(x,t)$ are determined by the position of a wave-front $X_{text{front}}(t)$, which moves sub-diffusively to the most distant sites $X_{text{front}}(t) sim t^{beta}$ with an exponent $beta < 1$. We support our numerical results by a self-consistent semiclassical picture of wavepacket propagation relating the exponent $beta$ with the relaxation rate of the return probability $Pi(0,t) sim e^{-Gamma t^beta}$. Importantly, the Anderson model on the RRG can be considered as proxy of the many-body localization transition (MBL) on the Fock space of a generic interacting system. In the final discussion, we outline possible implications of our findings for MBL.
We present a full description of the nonergodic properties of wavefunctions on random graphs without boundary in the localized and critical regimes of the Anderson transition. We find that they are characterized by two critical localization lengths: the largest one describes localization along rare branches and diverges with a critical exponent $ u_parallel=1$ at the transition. The second length, which describes localization along typical branches, reaches at the transition a finite universal value (which depends only on the connectivity of the graph), with a singularity controlled by a new critical exponent $ u_perp=1/2$. We show numerically that these two localization lengths control the finite-size scaling properties of key observables: wavefunction moments, correlation functions and spectral statistics. Our results are identical to the theoretical predictions for the typical localization length in the many-body localization transition, with the same critical exponent. This strongly suggests that the two transitions are in the same universality class and that our techniques could be directly applied in this context.
The parallel-tempering method has been applied to numerically study the thermodynamic behavior of a three-dimensional disordered antiferromagnetic Ising model with random fields at spin concentrations corresponding to regions of both weak and strong structural disorder. An analysis of the low-temperature behavior of the model convincingly shows that in the case of a weakly disordered samples there is realized an antiferromagnetic ordered state, while in the region of strong structural disorder the effects of random magnetic fields lead to the realization of a new phase state of the system with a complex domain structure consisting of antiferromagnetic and ferromagnetic domains separated by regions of a spin-glass phase and characterized by a spinglass ground state.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا