Do you want to publish a course? Click here

Self-organization of value and demand

67   0   0.0 ( 0 )
 Added by Raul Donangelo
 Publication date 1999
  fields Physics Financial
and research's language is English
 Authors R. Donangelo




Ask ChatGPT about the research

We study the dynamics of exchange value in a system composed of many interacting agents. The simple model we propose exhibits cooperative emergence and collapse of global value for individual goods. We demonstrate that the demand that drives the value exhibits non Gaussian fat tails and typical fluctuations which grow with time interval with a Hurst exponent of 0.7.



rate research

Read More

355 - Daniel Hexner , Dov Levine 2014
A simple periodically driven system displaying rich behavior is introduced and studied. The system self-organizes into a mosaic of static ordered regions with three possible patterns, which are threaded by one-dimensional paths on which a small number of mobile particles travel. These trajectories are self-avoiding and non-intersecting, and their relationship to self-avoiding random walks is explored. Near $rho=0.5$ the distribution of path lengths becomes power-law like up to some cutoff length, suggesting a possible critical state.
We study a self-reflexive DSGE model with heterogeneous households, aimed at characterising the impact of economic recessions on the different strata of the society. Our framework allows to analyse the combined effect of income inequalities and confidence feedback mediated by heterogeneous social networks. By varying the parameters of the model, we find different crisis typologies: loss of confidence may propagate mostly within high income households, or mostly within low income households, with a rather sharp crossover between the two. We find that crises are more severe for segregated networks (where confidence feedback is essentially mediated between agents of the same social class), for which cascading contagion effects are stronger. For the same reason, larger income inequalities tend to reduce, in our model, the probability of global crises. Finally, we are able to reproduce a perhaps counter-intuitive empirical finding: in countries with higher Gini coefficients, the consumption of the lowest income households tends to drop less than that of the highest incomes in crisis times.
A nonadditive generalization of Klimontovichs S-theorem [G. B. Bagci, Int.J. Mod. Phys. B 22, 3381 (2008)] has recently been obtained by employing Tsallis entropy. This general version allows one to study physical systems whose stationary distributions are of the inverse power law in contrast to the original S-theorem, which only allows exponential stationary distributions. The nonadditive S-theorem has been applied to the modified Van der Pol oscillator with inverse power law stationary distribution. By using nonadditive S-theorem, it is shown that the entropy decreases as the system is driven out of equilibrium, indicating self-organization in the system. The allowed values of the nonadditivity index $q$ are found to be confined to the regime (0.5,1].
We analyze the cumulative distribution of total personal income of USA counties, and gross domestic product of Brazilian, German and United Kingdom counties, and also of world countries. We verify that generalized exponential distributions, related to nonextensive statistical mechanics, describe almost the whole spectrum of the distributions (within acceptable errors), ranging from the low region to the middle region, and, in some cases, up to the power-law tail. The analysis over about 30 years (for USA and Brazil) shows a regular pattern of the parameters appearing in the present phenomenological approach, suggesting a possible connection between the underlying dynamics of (at least some aspects of) the economy of a country (or of the whole world) and nonextensive statistical mechanics. We also introduce two additional examples related to geographical distributions: land areas of counties and land prices, and the same kind of equations adjust the data in the whole range of the spectrum.
We investigate the wealth evolution in a system of agents that exchange wealth through a disordered network in presence of an additive stochastic Gaussian noise. We show that the resulting wealth distribution is shaped by the degree distribution of the underlying network and in particular we verify that scale free networks generate distributions with power-law tails in the high-income region. Numerical simulations of wealth exchanges performed on two different kind of networks show the inner relation between the wealth distribution and the network properties and confirm the agreement with a self-consistent solution. We show that empirical data for the income distribution in Australia are qualitatively well described by our theoretical predictions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا