We investigate consequences of adding irrelevant (or less relevant) boundary operators to a (1+1)-dimensional field theory, using the Ising and the boundary sine-Gordon model as examples. In the integrable case, irrelevant perturbations are shown to multiply reflection matrices by CDD factors: the low-energy behavior is not changed, while various high-energy behaviors are possible, including ``roaming RG trajectories. In the non-integrable case, a Monte Carlo study shows that the IR behavior is again generically unchanged, provided scaling variables are appropriately renormalized.